共查询到20条相似文献,搜索用时 15 毫秒
2.
The bioinorganic and medicinal chemistry of carboranes: from new drug discovery to molecular imaging and therapy 总被引:1,自引:0,他引:1
The role of carboranes in medicinal chemistry has diversified in recent years and now extends into areas of drug discovery, molecular imaging, and targeted radionuclide therapy. An introduction to carborane chemistry is provided to familiarize the non-expert with some key properties of these molecules, followed by an overview of current medicinally-orientated research involving carboranes. The broad-ranging nature of this research is illustrated, with emphasis placed on recent highlights and advances in this field. 相似文献
3.
M M Hann A R Leach G Harper 《Journal of chemical information and computer sciences》2001,41(3):856-864
Using a simple model of ligand-receptor interactions, the interactions between ligands and receptors of varying complexities are studied and the probabilities of binding calculated. It is observed that as the systems become more complex the chance of observing a useful interaction for a randomly chosen ligand falls dramatically. The implications of this for the design of combinatorial libraries is explored. A large set of drug leads and optimized compounds is profiled using several different properties relevant to molecular recognition. The changes observed for these properties during the drug optimization phase support the hypothesis that less complex molecules are more common starting points for the discovery of drugs. An extreme example of the use of simple molecules for directed screening against thrombin is provided. 相似文献
4.
5.
The purpose of the present review is to focus on the discovery of various sulfur-containing peptides with particular emphasis on their pharmacological mechanisms. This presentation is organized according to the structures of the sulfur-containing peptides. 相似文献
6.
The influence of natural products upon drug discovery 总被引:13,自引:0,他引:13
7.
Christine N. Morrison Kathleen E. Prosser Ryjul W. Stokes Anna Cordes Nils Metzler-Nolte Seth M. Cohen 《Chemical science》2020,11(5):1216
Fragment-based drug discovery (FBDD) is a powerful strategy for the identification of new bioactive molecules. FBDD relies on fragment libraries, generally of modest size, but of high chemical diversity. Although good chemical diversity in FBDD libraries has been achieved in many respects, achieving shape diversity – particularly fragments with three-dimensional (3D) structures – has remained challenging. A recent analysis revealed that >75% of all conventional, organic fragments are predominantly 1D or 2D in shape. However, 3D fragments are desired because molecular shape is one of the most important factors in molecular recognition by a biomolecule. To address this challenge, the use of inert metal complexes, so-called ‘metallofragments’ (mFs), to construct a 3D fragment library is introduced. A modest library of 71 compounds has been prepared with rich shape diversity as gauged by normalized principle moment of inertia (PMI) analysis. PMI analysis shows that these metallofragments occupy an area of fragment space that is unique and highly underrepresented when compared to conventional organic fragment libraries that are comprised of orders of magnitude more molecules. The potential value of this metallofragment library is demonstrated by screening against several different types of proteins, including an antiviral, an antibacterial, and an anticancer target. The suitability of the metallofragments for future hit-to-lead development was validated through the determination of IC50 and thermal shift values for select fragments against several proteins. These findings demonstrate the utility of metallofragment libraries as a means of accessing underutilized 3D fragment space for FBDD against a variety of protein targets.Fragment-based drug discovery (FBDD) using 3-dimensional metallofragments is a new strategy for the identification of bioactive molecules. 相似文献
8.
Alan R. Katritzky C. Dennis Hall Bahaa El-Dien M. El-Gendy Bogdan Draghici 《Journal of computer-aided molecular design》2010,24(6-7):475-484
The influence of tautomerism on the precise structure of drugs and thus of their potential to interact with biological systems is discussed from thermodynamic and kinetic aspects. The types of tautomerism encountered in the structure of drugs in current use are surveyed together with the effect of pH, solvent polarity, and temperature. 相似文献
9.
Molecular dynamics simulations can now track rapid processes—those occurring in less than about a millisecond—at atomic resolution
for many biologically relevant systems. These simulations appear poised to exert a significant impact on how new drugs are
found, perhaps even transforming the very process of drug discovery. We predict here future results we can expect from, and
enhancements we need to make in, molecular dynamics simulations over the coming 25 years, and in so doing set out several
Grand Challenges for the field. In the context of the problems now facing the pharmaceutical industry, we ask how we can best
address drug discovery needs of the next quarter century using molecular dynamics simulations, and we suggest some possible
approaches. 相似文献
10.
11.
Matthew D Petroski 《BMC biochemistry》2008,9(Z1):S7
Abstract
The ubiquitin system of protein modification has emerged as a crucial mechanism involved in the regulation of a wide array of cellular processes. As our knowledge of the pathways in this system has grown, so have the ties between the protein ubiquitin and human disease. The power of the ubiquitin system for therapeutic benefit blossomed with the approval of the proteasome inhibitor Velcade in 2003 by the FDA. Current drug discovery activities in the ubiquitin system seek to (i) expand the development of new proteasome inhibitors with distinct mechanisms of action and improved bioavailability, and (ii) validate new targets. This review summarizes our current understanding of the role of the ubiquitin system in various human diseases ranging from cancer, viral infection and neurodegenerative disorders to muscle wasting, diabetes and inflammation. I provide an introduction to the ubiquitin system, highlight some emerging relationships between the ubiquitin system and disease, and discuss current and future efforts to harness aspects of this potentially powerful system for improving human health.Publication history
Republished from Current BioData's Targeted Proteins database (TPdb; http://www.targetedproteinsdb.com).12.
The multitude of roles that carbohydrates and their glyco-conjugates play in biological processes has stimulated great interest in determining the nature of their interactions in both normal and diseased states. Manipulating such interactions will provide leads for drug discovery. Of the major classes of biomolecule, carbohydrates are the most structurally diverse. This hetereogeneity makes isolation of pure samples, and in sufficient amounts, from biological sources extremely difficult. Chemical synthesis offers the advantage of producing pure and structurally defined oligosaccharides for biological investigations. Although the complex nature of carbohydrates means that this is challenging, recent advances in the field have facilitated access to these molecules. The synthesis and isolation of oligosaccharides combined with progress in glycoarray technology have aided the identification of new carbohydrate-binding drug targets. This review aims to provide an overview of the latest advancements in carbohydrate chemistry and the role of these complex molecules in drug discovery, focusing particularly on synthetic methodologies, glycosaminoglycans, glycoprotein synthesis and vaccine development over the last few years. 相似文献
13.
Marc Bickle 《Analytical and bioanalytical chemistry》2010,398(1):219-226
The term “high-content screening” has become synonymous with imaging screens using automated microscopes and automated image analysis. The term was coined a little over 10 years ago. Since then the technology has evolved considerably and has established itself firmly in the drug discovery and development industry. Both the instruments and the software controlling the instruments and analyzing the data have come to maturity, so the full benefits of high-content screening can now be realized. Those benefits are the capability of carrying out phenotypic multiparametric cellular assays in an unbiased, fully automated, and quantitative fashion. Automated microscopes and automated image analysis are being applied at all stages of the drug discovery and development pipeline. All major pharmaceutical companies have adopted the technology and it is in the process of being embraced broadly by the academic community. This review aims at describing the current capabilities and limits of the technology as well as highlighting necessary developments that are required to exploit fully the potential of high-content screening and analysis. 相似文献
14.
15.
16.
Christine N. Morrison Kathleen E. Prosser Ryjul W. Stokes Anna Cordes Nils Metzler-Nolte Seth M. Cohen 《Chemical science》2022,13(32):9450
Correction for ‘Expanding medicinal chemistry into 3D space: metallofragments as 3D scaffolds for fragment-based drug discovery’ by Christine N. Morrison et al., Chem. Sci., 2020, 11, 1216–1225, https://doi.org/10.1039/C9SC05586J.The authors regret that in the original article, inhibitory values reported for some metallofragments were incorrect. Unfortunately, DMSO stock solutions of reportedly active ferrocene-based metallofragments were found to decompose in the presence of light, which resulted in inaccurate inhibition values. The authors maintain that the core conclusions of the paper are accurate and the utility of three-dimensional metal complexes for fragment-based drug discovery has merit.In the original article, ‘class A’ metallofragments are comprised of ferrocene derivatives (Fig. 1). Some of these ferrocene fragments (specifically those containing carbonyl groups) are reported as broadly inhibiting several protein targets. It was noted in our original report that the ferrocene scaffold was likely promiscuous due to its lipophilicity and potential redox activity, but that it might still serve as a useful metallofragment for fragment-based drug discovery (FBDD) campaigns. However, re-evaluation of these compounds against the influenza endonuclease (PAN) failed to reproduce our original inhibition results for the class A metallofragments using freshly prepared stocks, indicating a problem with the materials used in the original study.Open in a separate windowFig. 1Chemical structures of class A metallofragments.Several compounds from class A were originally reported as having near complete (100%) inhibition against PAN endonuclease at an inhibitor concentration of 200 μM (and2).2). However, when re-evaluated under identical conditions, using freshly prepared DMSO stock solutions, inhibition was only observed with one fragment of this class (A22, Fig. 1), with the previously reported highly active fragments (A4, A7–A21, Compound A1 A2 A3 A4 A5 A7 A8 A9 A10 A11 Reported 12 ± 6 <1 <1 45 ± 14 8 ± 7 103 ± 5 103 ± 4 53 ± 5 46 ± 7 90 ± 5 Corrected 3 ± 10 n.d. 18 ± 3 6 ± 3 21 ± 5 9 ± 3 10 ± 5 4 ± 2 16 ± 4 10 ± 7