首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The difference in the morphology and crystallization aspects of hydrogen-bond-mediated self-assembling systems with single and double hydrogen-bonding motifs is studied here with carbamates as an example. These carbamates have alkyl side chains of various lengths, from C(4) to C(18). The biscarbamates with double hydrogen-bonding sites and symmetric substitution of alkyl segments show a significantly different morphological behavior as compared to the N-octadecyl carbamate alkyl esters (ref 5, referred to as simple carbamates henceforth) with a single hydrogen-bond motif and asymmetric substitution of alkyl side chains. In contrast to the simple carbamates in which no significant difference was found in the spherulite size from C(4) to C(12), with the biscarbamates we find that the spherulitic size, rate of growth of spherulites, and rate of crystallization show a maximum with an alkyl chain length of C(8). This is rationalized in terms of the relative contributions of the hydrogen-bond and van der Waals interaction energies. Oriented X-ray diffraction patterns from the fibrils of the spherulites lead to a model for the growth patterns of the hydrogen-bond planes and the molecular orientation in the spherulites.  相似文献   

2.
Studies on self-assembly of molecules, mediated by, e.g., hydrogen bonding interactions, are a major theme currently. The consequence of such self-assembly of hydrogen-bonding molecules, when dispersed in a polymer matrix, has not been studied so far. We describe such a polymer dispersed self-assembling small molecule system, in which a homologous series of small molecules, with a hydrogen-bonding moiety and alkyl side chains, is dispersed in polycarbonate. These are not liquid crystalline. The self-assembling molecules form colloidal size domains in the polymer, and this involves a hierarchy of three levels of assembly. The molecules self-assemble into small crystallites, which then organize into spherulitic structures. These spherulites then aggregate to form large, uniform near-spherical domains. The size and uniformity of the domains depend on the length of the alkyl side chain. The domain formation is reversible; that is, these domains can be melted and reformed.  相似文献   

3.
With a view to understand the role of hydrogen bonding in controlling the morphology of self-assembling carbamate systems, N-octadecylcarbamate dodecyl ester was blended individually with a low molecular weight polyethylene and two commercial clarifiers, namely Kemamide S and Kemamide E 180. The effect of blending on the morphology of this long chain carbamate was investigated using optical microscopy, differential scanning calorimetry, and X-ray diffraction. The crystal structure of the carbamate was not affected by the addition of polyethylene or Kemamide S. The heterogeneous nucleation of the carbamate by the polyethylene or Kemamide S resulted in the reduction of the spherulite size of the carbamate, but it did not improve the transparency of the sample due to phase separation. On the other hand, significant improvement of transparency was achieved when the carbamate was blended with Kemamide E 180. Blending reduced the crystallite and spherulite size, heat of fusion, and crystallinity. An exchange of hydrogen bonds between the carbamate and Kemamide E is indicated in the IR spectra, and this affects the packing of the alkyl chains of the carbamates. This heterogeneous blending shows similar effects on the morphology as was achieved by blending two homologous carbamates in our previous study (J. Phys. Chem. B 2003, 107, 8416).  相似文献   

4.
Lipid bilayers are a most central building block of the biological molecular organization. Their two-dimensional self-assembly is essential to the generation of biological shapes and sizes on the molecular level. The observation that a totally synthetic amphiphile in water is spontaneously assembled to a bilayer structure suggested that bilayer formation is a general physicochemical phenomenon that is not restricted to particular structures of biolipid molecules. Bilayer formation is now observed for a large variety of synthetic amphiphiles which contain one, two, three, or four alkyl tails. The flexible alkyl tail may be replaced by perfluoroalkyl chains. The supramolecular structures obtained therefrom can be related to the component's molecular structure in many cases. The structural variety and the ease of molecular design make the synthetic bilayer an attractive vehicle for organizing covalently bound functional units and guest molecules. In addition, stable monolayers on water, planar lipid membranes (BLM), and free-standing cast films are obtainable because of the self-assembling property of bilayer-forming compounds. These molecular organizations display common supramolecular features. The use of the cast film as a molecular template provides exciting potential for the production of novel two-dimensional materials.  相似文献   

5.
The crystallization and morphology of poly(ethylene‐2,6‐naphthalene dicarboxylate) (PEN) containing, as nucleating agents, a sodium salt of a copolymer of ethylene and acrylic acid or a sodium salt of a copolymer of ethylene and methacrylic acid, were investigated with differential scanning calorimetry, polarized optical microscopy, and small‐angle light scattering. The nucleating agents accelerated the crystallization rate at high temperatures by decreasing the surface free energy barrier hindering nucleation. Meanwhile, the nucleating agents with flexible chains could also improve the mobility of the PEN chains and increase the crystallization rate at low temperatures. Hedrites were observed when PEN was crystallized at high temperatures, whereas crystallization at low temperatures led to the formation of spherulites. Similar but smaller morphologies were obtained in the presence of nucleating agents. With nucleating agents, the spherulites formed at low temperatures were less perfect, although the optical properties of the spherulites were not influenced. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 2387–2394, 2002  相似文献   

6.
The creation of smart, self-assembling materials that undergo morphological transitions in response to specific physiological environments can allow for the enhanced accumulation of imaging or drug delivery agents based on differences in diffusion kinetics. Here, we have developed a series of self-assembling peptide amphiphile molecules that transform either isolated from molecules or spherical micelles into nanofibers when the pH is slightly reduced from 7.4 to 6.6, in isotonic salt solutions that simulate the acidic extracellular microenvironment of malignant tumor tissue. This transition is rapid and reversible, indicating the system is in thermodynamic equilibrium. The self-assembly phase diagrams show a single-molecule-to-nanofiber transition with a highly concentration-dependent transition pH. However, addition of a sterically bulky Gd(DO3A) imaging tag on the exterior periphery shifts this self-assembly to more acidic pH values and also induces a spherical micellar morphology at high pH and concentration ranges. By balancing the attractive hydrophobic and hydrogen-bonding forces, and the repulsive electrostatic and steric forces, the self-assembly morphology and the pH of transition can be systematically shifted by tenths a pH unit.  相似文献   

7.
Kong  Weili  Tong  Beibei  Ye  Aolin  Ma  Ruixue  Gou  Jiaomin  Wang  Yaming  Liu  Chuntai  Shen  Changyu 《Journal of Thermal Analysis and Calorimetry》2019,135(6):3107-3114

Poly(lactic acid) (PLA)/poly(ethylene oxide) (PEO) blends nucleated by a self-assembly nucleating agent, N,N′,N″-tricyclohexyl-1,3,5-benzenetricarboxylamide (BTCA), were prepared by melt blending. The crystallization behavior and mechanical properties of the materials were investigated by differential scanning calorimetry, polarized optical microscopy, wide-angle X-ray diffraction, dynamic mechanical analyzer and tensile testing. It was found that PEO had a synergistic effect together with BTCA on promoting PLA crystallization, besides its toughening effect on the material. Moreover, BTCA revealed prominent reinforcement effect on both neat PLA and PLA/PEO blends in the glass transition region and above, indicating the improvement on the heat resistance of the materials.

  相似文献   

8.
The long-chain alkyl derivatives of a nucleoside analogue-acyclovir were prepared in the paper. One is stearyl-glycero-succinyl-acyclovir (SGSA) with a single 18-carbon length (C18) alkyl chain. Another is dioctadecyl-aspartate-succinyl-acyclovir (DASA) with double C18 alkyl chains. They were prepared by the esterification of succinyl-acyclovir with the lipids, and sodium salts of them were also prepared. Guanine moieties and alkyl moieties bring the derivatives intermolecular hydrogen bonding and hydrophobic interaction in water separately. The forces are influenced by the number of alkyl chains and the charged state, and determine the solubility and the self-assembly behavior of the derivatives. The double alkyl-chain derivatives (DASA and DASA-Na) formed rigid Langmuir monolayers on air/water surface, while the single alkyl chain derivatives (SGSA and SGSA-Na) did not. However, cholesterol (Chol) could assist SGSA to form rigid monolayers through inserting into the alkyl chains of SGSA to mimic the second alkyl chain. SGSA self-aggregates in water were prepared by the injection method with tetrahydrofuran as solvent. Cuboid-like shape and nanoscale size demonstrated that SGSA self-aggregates were self-assembled nanoparticles. Shape, particle size, zeta potential and phase transition of the nanoparticles were characterized. And they showed an average size of 83.2 nm, a negative surface charge of -31.3-mV zeta potential and a gel-liquid crystalline phase transition of 50.38 degrees C. The formation mechanism of self-assembled nanoparticles was analyzed. Hydrophobic interaction of alkyl chains improves SGSA molecules to form bilayers, and then cuboid-like nanoparticles were obtained by layer-by-layer aggregation based on inter-bilayers hydrogen bonding. However, the charged guanine moieties make SGSA-Na lose the function of hydrogen bonding so that SGSA-Na only forms vesicles in water based on hydrophobic interaction. Strong hydrophobicity and wide-open rigid double alkyl chains of DASA and DASA-Na restrict self-assembly in water media, and no homogeneous suspensions were obtained. Therefore, the molecular self-assembly behavior of the long-chain alkyl derivatives of nucleoside analogues on water surface or in water media is determined by the number of alkyl chains and the charged state.  相似文献   

9.
采用氯仿/乙醇共沸溶液浇铸法制备了混合均匀的聚L-乳酸/聚(天冬氨酸-co-乳酸)共混物(PLLA/PAL)体系.研究了PLLA/PAL共混体系的热性能、结晶行为、形态结构和力学性能,评价了PLLA和PAL之间的相容性.结果表明,PAL对PLLA的结晶行为和热性能产生了较大的影响,共混物的结晶度较低,共混体系中部分PAL会进入PLLA球晶的片晶而导致PLLA球晶结构不完善,熔点降低.PAL的含量小于20%的PLLA/PAL共混物的拉伸强度和断裂延伸率均高于纯PLLA.PLLA和PAL分子链相互缠结,产生的氢键使分子链间存在较强的相互作用,具有较好的相容性.  相似文献   

10.
张小兵  李敏籼 《有机化学》2009,29(4):528-535
棒-线(Rod-Coil)型分子的合成及其自组装行为研究是当前超分子材料研究领域的重要研究方向. 与传统的柔性(Coil-Coil)型嵌段聚合物和Rod-Coil型嵌段聚合物相比, Rod-Coil型分子表现出不同的相行为、自组织特性和微结构, 可以自组装形成多种纳米结构. 研究结果显示, 横向分子间氢键是Rod-Coil型分子自组装形成液晶相和(或)有机凝胶等自组装体的主要驱动力. 主要介绍目前文献报道的横向分子间氢键驱动下的Rod-Coil型分子自组装.  相似文献   

11.
Despite their immiscibility, blending polylactic acid (PLA) with poly(ε-caprolactone) (PCL) provides an efficient strategy for obtaining a biopolymer blend with tailored properties due to their complementary physical properties. In this study, graphene oxide (GO) was employed as a 2-D nanofiller and nucleating agent to improve the properties of the immiscible PLA/PCL blends at 70/30, 50/50, and 30/70 wt ratios. Nanofibers of PLA/PCL blends and PLA/PCL/GO composites were investigated. It was interesting to find that the GO selectively localized in the minor phase resulting from the phase separation. The selective localization of the GO as the nucleating agent had an influence on the degree of crystallinity and crystalline morphology in the blended composites. This study also demonstrated that the molecular chains in the PLA phase oriented along the fiber axes, while in the PCL phase, the partial crystallites changed their orientation direction to be perpendicular to the fiber axes with the addition of GO.  相似文献   

12.
Siloxane-organic hybrids with well-ordered mesostructures were synthesized through the self-assembly of novel amphiphilic molecules that consist of cubic siloxane heads and hydrophobic alkyl tails. The monoalkyl precursors functionalized with ethoxy groups (C(n)H(2n+1)Si(8)O(12)(OEt)(7), 1 Cn, n=16, 18, and 20) were hydrolyzed under acidic conditions with the retention of the siloxane cages, leading to the formation of two-dimensional hexagonal phases by evaporation-induced self-assembly processes. Analysis of the solid-state (29)Si MAS NMR spectra of these hybrid mesostructures confirmed that the cubic siloxane units were cross-linked to form siloxane networks. Calcination of these hybrids gave mesoporous silica, the pore diameter of which varied depending on the alkyl-chain length. We also found that the precursors that had two alkyl chains formed lamellar phases, thus confirming that the number of alkyl chains per cage had a strong influence on the mesostructures. These results expand the design possibility of novel nanohybrid and nanoporous materials through the self-assembly of well-defined oligosiloxane-based precursors.  相似文献   

13.
The properties of supramolecular materials are dictated by both kinetic and thermodynamic aspects, providing opportunities to dynamically regulate morphology and function. Herein, we demonstrate time-dependent regulation of supramolecular self-assembly by connected, kinetically competing enzymatic reactions. Starting from Fmoc-tyrosine phosphate and phenylalanine amide in the presence of an amidase and phosphatase, four distinct self-assembling molecules may be formed which each give rise to distinct morphologies (spheres, fibers, tubes/tapes and sheets). By varying the sequence or ratio in which the enzymes are added to mixtures of precursors, these structures can be (transiently) accessed and interconverted. The approach provides insights into dynamic self-assembly using competing pathways that may aid the design of soft nanostructures with tunable dynamic properties and life times.  相似文献   

14.
利用扫描隧道显微镜研究了荧光液晶分子2, 5-二-[2-(3, 4-二-十二烷氧基-苯基)-乙烯基]-3, 6-二甲基吡嗪(BPDP12)在石墨表面上自组装单层膜的结构. 实验结果表明, 该化合物在石墨表面形成两种自组装结构:一种是稳定的, 分子的共轭中心相互平行, 烷基链相互交错的密排结构;另一种是不稳定的, 分子的共轭中心彼此为烷基链所分隔的非密排结构. 分子之间较强的π-π作用和分子烷基链之间的范德华作用力对分子组装的取向形成竞争, 是产生两种不同组装结构的根本原因.  相似文献   

15.
Over the past few years, two‐dimensional (2D) nanoporous networks have attracted great interest as templates for the precise localization and confinement of guest building blocks, such as functional molecules or clusters on the solid surfaces. Herein, a series of two‐component molecular networks with a 3‐fold symmetry are constructed on graphite using a truxenone derivative and trimesic acid homologues with carboxylic‐acid‐terminated alkyl chains. The hydrogen‐bonding partner‐recognition‐induced 2D crystallization of alkyl chains makes the flexible alkyl chains act as rigid spacers in the networks to continuously tune the pore size with an accuracy of one carbon atom per step. The two‐component networks were found to accommodate and regulate the distribution and aggregation of guest molecules, such as COR and CuPc. This procedure provides a new pathway for the design and fabrication of molecular nanostructures on solid surfaces.  相似文献   

16.
In the present work, α‐form nucleating agent 1,3:2,4‐bis (3,4‐dimethylbenzylidene) sorbitol (DMDBS, Millad 3988) is introduced into the blends of polypropylene/ethylene–octene copolymer (PP/POE) blends to study the effect of the nucleating agent on the toughness of PP/POE blends through affecting the crystallization behavior of PP matrix. Compared with the PP/POE blends, in which the toughness of the blends increases gradually with the increasing content of POE and only a weak transition in toughness is observed, addition of 0.2 wt % DMDBS induces not only the definitely brittle‐ductile transition at low POE content but also the enhancement of toughness and tensile strength of the blends simultaneously. Study on the morphologies of impact‐fractured surfaces suggests that the addition of a few amounts of DMDBS increases the degree of plastic deformation of sample during the fracture process. WAXD results suggest that POE induces the formation of the β‐form crystalline of PP; however, DMDBS prevents the formation of it. SEM results show that the addition of DMDBS does not affect the dispersion and phase morphologies of POE particles in PP matrix. DSC and POM results show that, although POE acts as a nucleating agent for PP crystallization and which enhances the crystallization temperature of PP and decreases the spherulites size of PP slightly, DMDBS induces the enhancement of the crystallization temperature of PP and the decrease of spherulites size of PP more greatly. It is concluded that the definitely brittle–ductile transition behavior during the impact process and the great improvement of toughness of the blends are attributed to the sharp decrease of PP spherulites size and their homogeneous distribution obtained by the addition of nucleating agent. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 577–588, 2008  相似文献   

17.
The development of the poly(3‐hydroxybutyrate) (PHB) morphology in the presence of already existent poly(vinylidene fluoride) (PVDF) spherulites was studied by two‐stage solidification with two separate crystallization temperatures. PVDF formed irregular dendrites at lower temperatures and regular, banded spherulites at elevated temperatures. The transition temperature of the spherulitic morphology from dendrites to regular, banded spherulites increased with increasing PVDF content. A remarkable amount of PHB was included in the PVDF dendrites, whereas PHB was rejected into the remaining melt from the banded spherulites. When PVDF crystallized as banded spherulites, PHB could consequently crystallize only around them, if at all. In contrast, PHB crystallized with a common growth front, starting from a defined site in the interfibrillar regions of volume‐filling PVDF dendrites. It formed by itself dendritic spherulites that included a large number of PVDF spherulites. For blends with a PHB content of more than 80 wt %, for which the PVDF dendrites were not volume‐filling, PHB first formed regular spherulites. Their growth started from outside the PVDF dendrites but could later interpenetrate them, and this made their own morphology dendritic. These PHB spherulites melted stepwise because the lamellae inside the PVDF dendrites melted at a lower temperature than those from outside. This reflected the regularity of the two fractions of the lamellae because that of those inside the dendrites of PVDF was controlled by the intraspherulitic order of PVDF, whereas that from outside was only controlled by the temperature and the melt composition. The described morphologies developed without mutual nucleating efficiency of the components. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 873–882, 2003  相似文献   

18.
The spherulitic structure and morphology development of poly(ethylene succinate)/poly(ethylene oxide) (PES/PEO) blends with one-step crystallization behavior were observed by means of polarizing optical microscope.It was found that the pure PES spherulite in which the adequate quantity of PEO melt existed in the interlamellar regions,and the blending spherulite formed by both PES and PEO lamellae could form simultaneously.When the two types of spherulites contacted with each other the front of the blendi...  相似文献   

19.
Organic and polymeric molecules based on π-conjugated units represent an important class of components for optical and optoelectronic functionalized soft materials. Inspired by the innovative molecular design made by synthetic chemists, new functions and applications of π-conjugated molecules are continuously emerging. However, a challenge that remains is to soften these molecules. Alkylation is a commonly employed synthetic strategy to achieve functionalization in order to improve processability, i.e., solubility in volatile solvents, for better utilization in the rapidly-developing field of organic electronics. In addition it is recognized as a powerful strategy to tune the interaction among the π-conjugated moieties. In a different interpretation of alkylation, alkylated-π compounds can be viewed as a class of hydrophobic amphiphiles, since the rigid π-conjugated moiety and flexible alkyl chains are intrinsically immiscible. Recent studies have shown that such compounds can form a variety of self-organized solid and thermotropic liquid crystalline structures as well as nonassembled liquid forms depending upon the position, number and kinds of attached alkyl chains. Here, we present a brief overview of recent developments of alkylated-π chemistry, with an emphasis on the relationships between molecular design, self-assembly behavior and applications in optical and optoelectronic devices. We hope this review can serve as a guide and reference for people working in different research areas, including self-assembly and colloid sciences, synthetic and materials chemistry was well as organic electronics.  相似文献   

20.
Heteracalixaromatics are an emerging generation of macrocyclic host molecules in supramolecular chemistry. As a typical example of heteracalixaromatics, oxacalix[2]arene[2]triazine adopts a shape-persistent 1,3-alternate conformation and can be easily functionalized. Taking it as a platform, a series of oxacalix[2]arene[2]triazine-based amphiphiles bearing long alkyl chains were synthesized through post-macrocyclization functionalization or 3+1 fragment coupling protocols. The self-assembly behavior of these amphiphiles in a mixture of tetrahydrofuran (THF) and water was investigated. Dynamic light scattering (DLS) measurements revealed that the size of the self-assembled aggregates is dependent on the structure of the amphiphiles. The long alkyl chain substituents and/or intermolecular hydrogen bonds were found to promote the self-assembly.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号