首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We describe the synthesis of a bisporphyrin tweezer receptor 1·H(4) and its metalation with Zn(II) and Rh(III) cations. We report the thermodynamic characterization of the supramolecular chirality induction process that takes place when the metalated bisporphyrin receptors coordinate to enantiopure 1,2-diaminocyclohexane in two different solvents, toluene and dichloromethane. We also performed a thorough study of several simpler systems that were used as models for the thermodynamic characterization of the more complex bisporphyrin systems. The initial complexation of the chiral diamine with the bisporphyrins produces a 1:1 sandwich complex that opens up to yield a simple 1:2 complex in the presence of excess diamine. The CD spectra associated with the 1:1 and 1:2 complexes of both metalloporphyrins, 1·Zn(2) and 1·Rh(2), display bisignate Cotton effects when the chirogenesis process is studied in toluene solutions. On the contrary, in dichloromethane solutions, only 1·Zn(2) yields CD-active 1:1 and 1:2 complexes, while the 1:2 complex of 1·Rh(2) is CD-silent. In both solvents, porphyrin 1·Zn(2) features a stoichiometrically controlled chirality inversion process, which is the sign of the Cotton effect of the 1:1 complex is opposite to that of the 1:2 complex. In contrast, porphyrin 1·Rh(2) affords 1:1 and 1:2 complexes in toluene solutions with the same sign for their CD couplets. Interestingly, in both solvents, the signs of the CD couplets associated with the 1:1 sandwich complexes of 1·Zn(2) and 1·Rh(2) are opposite. The amplitudes of the CD couplets are higher for 1·Zn(2) than for 1·Rh(2). This observation is in agreement with 1·Rh(2) having a smaller extinction coefficient than 1·Zn(2). We performed DFT-based calculations and assigned molecular structures to the 1:1 and 1:2 complexes that explain the observed signs for their CD couplets. Unexpectedly, the quantification of the thermodynamic stability of the two metallobisporphyrin/diamine 1:1 sandwich complexes revealed the existence of interplay between effective molarity values (EM) and the strength of the intermolecular interaction (K(m); N···Zn or N···Rh) used in their assembly. The EM for the N···Rh(III) intramolecular interaction is 3 orders of magnitude smaller than that for the N···Zn(II) interaction, both of which are embedded in the same scaffold of the 1·M(2) bisporphyrin receptor.  相似文献   

3.
A diethylpyrrole‐bridged dizinc(II) bisporphyrin (Zn2DEP) is reported that encapsulates fluorescent probe pyrene molecules through strong π–π interactions, which can relay information about the chemical environment in the interior of the host–guest supramolecular assembly. X‐ray structures of both Zn2DEP and the encapsulated pyrene complex are reported, which provides a rare opportunity to investigate the structural changes upon guest binding. A comparative structural analysis demonstrated the exceptional ability of this bisporphyrin platform to open its binding pocket for pyrene encapsulation by a vertical displacement of more than 2.45 Å, although both Zn2DEP and the pyrene complex have nearly parallel porphyrin ring orientations. The 1H NMR spectrum of the encapsulated pyrene complex in solution shows the upfield shifts of the pyrene protons due to a strong ring current effect, which demonstrates the retention of the solid‐state structure in solution. To further assess the extent to which pyrene guests remain encapsulated in solution, a known fluorescence quencher, dimethylaniline, was added to the host–guest assembly, which shows no exciplex formation for days in nonpolar solvents. Thus, the assembly also retained the structural integrity in solution for a long time. The association constant (Kasso) for such a complexation process in solution was observed to be 1.78×105 M ?2 for 1:2 binding. Steady‐state fluorescence and lifetime studies indicate significant photoinduced singlet–singlet energy transformation from the excited state of pyrene to zinc bisporphyrin.  相似文献   

4.
Salen-type bisoxime 5,5′-dimethoxy-2,2′-[(ethylenedioxy)bis(nitrilomethylidyne)]diphenol (H2L) and its trinuclear Ni(II) cluster {[(NiL)(n-BuOH)]2(μ-OAc)2Ni}?·?n-BuOH have been synthesized and structurally characterized. The structure of H2L adopts an L-shape conformation where the two salicylaldoxime moieties are well separated. In the trinuclear Ni(II) cluster, two acetates coordinate to three Ni(II)'s through Ni–O–C–O–Ni bridges, four μ-phenoxos from two [NiL(n-BuOH)] units also coordinate to Ni(II), and two n-butanols coordinate to two terminal Ni(II)'s forming a distorted octahedral geometry. The Ni–O–C–O–Ni and μ-phenoxo bridges play important roles in assembling Ni(II) and the ligands. H2L forms a rectangle-like large cave structure through O–H?···?N, C–H?···?O, and C–H?···?π hydrogen-bond interactions, whereas its trinuclear Ni(II) cluster exhibits a 3-D supramolecular network structure through intermolecular O–H?···?O, C–H?···?O, and C–H?···?π hydrogen-bond interactions.  相似文献   

5.
Crystal engineering can be described as the understanding of intermolecular interactions in the context of crystal packing and the utilization of such understanding to design new solids with desired physical and chemical properties. Free‐energy differences between supramolecular isomers are generally small and minor changes in the crystallization conditions may result in the occurrence of new isomers. The study of supramolecular isomerism will help us to understand the mechanism of crystallization, a very central concept of crystal engineering. Two supramolecular isomers of dichloridobis(1,10‐phenanthroline‐κ2N,N′)cobalt(II), [CoCl2(C12H8N2)2], i.e. (IA) (orthorhombic) and (IB) (monoclinic), and two supramolecular isomers of dichloridobis(1,10‐phenanthroline‐κ2N,N′)cobalt(II) N,N‐dimethylformamide monosolvate, [CoCl2(C12H8N2)2]·C3H7NO, i.e. (IIA) (orthorhombic) and (IIB) (monoclinic), were synthesized in dimethylformamide (DMF) and structurally characterized. Of these, (IA) and (IIA) have been prepared and structurally characterized previously [Li et al. (2007). Acta Cryst. E 63 , m1880–m1880; Cai et al. (2008). Acta Cryst. E 64 , m1328–m1329]. We found that the heating rate is a key factor for the crystallization of (IA) or (IB), while the temperature difference is responsible for the crystallization of (IIA) or (IIB). Based on the crystallization conditions, isomerization behaviour, the KPI (Kitajgorodskij packing index) values and the density data, (IB) and (IIA) are assigned as the thermodynamic and stable kinetic isomers, respectively, while (IA) and (IIB) are assigned as the metastable kinetic products. The 1,10‐phenanthroline (phen) ligands interact with each other through offset face‐to‐face (OFF) π–π stacking in (IB) and (IIB), but by edge‐to‐face (EF) C—H...π interactions in (IA) and (IIA). Meanwhile, the DMF molecules in (IIB) connect to neighbouring [CoCl2(phen)2] units through two C—H...Cl hydrogen bonds, whereas there are no obvious interactions between DMF molecules and [CoCl2(phen)2] units in (IIA). Since OFF π–π stacking is generally stronger than EF C—H...π interactions for transition‐metal complexes with nitrogen‐containing aromatic ligands, (IIA) is among the uncommon examples that are stable and densely packed but that do not following Etter's intermolecular interaction hierarchy.  相似文献   

6.
7.
Abstract

A cobalt(II) complex with empirical formula [Co(dicl)2·(H2O)3]·MeOH (where dicl?=?diclofenac) was synthesized and characterized by elemental analysis, flame atomic absorption spectroscopy (FAAS), infrared spectroscopy (FTIR) and thermal decomposition techniques (TGA). The crystal structure of the complex was determined by single crystal X-ray diffraction technique. The compound crystallizes in the monoclinic space group I2/a. Apical water molecules link adjacent cobalt(II) ions forming polymeric chains along the crystal a axis. The thermal behavior of the complex was studied by TG/DTG/DTA, TG/MS and TG/FTIR methods under non-isothermal conditions in air. Upon heating [Co(dicl)2·(H2O)3]·MeOH decomposes progressively to metal oxides, which are the final products of pyrolysis. Furthermore, antioxidant activity of the complex was examined.  相似文献   

8.
A ternary Cu(II) complex, [Cu(naph-ser)(bipy)]·0.125CH2Cl2 (naph-ser = a Schiff base derived from 2-hydroxy-1-naphthaldehyde and l-serine, bipy = 2, 2′-bipyridine), has been synthesized and structurally characterized. In the crystal structure, a supramolecular assembly with left-handed double helices is formed by O–H···O hydrogen bonding interactions. The DNA-binding properties and DNA-cleavage activity of the Cu(II) complex have been investigated by spectroscopic methods and agarose gel electrophoresis. The results indicate that the Cu(II) complex can bind to CT-DNA via an intercalative mode and shows efficient cleavage activity in the absence and presence of reducer.  相似文献   

9.
10.
A complex of composition {[{Cu(NDC)(OH2)(tn)(μ-OH2)}2]·2H2O} (1) and a mononuclear complex salt [Cu(OH2)2(tn)2](NDC)·3H2O (2), where NDC = 2,6-naphthalenedicarboxylate dianion and tn = 1,3-diaminopropane, were simultaneously crystallized from an aqueous solution of the copper(II) naphthalenedicarboxylate—1,3-diaminopropane—methanol system. The crystal and molecular structures of both complexes were determined by single-crystal X-ray diffraction. Compound (1) consists of a supramolecular coordination complex in which the monomeric unit is assembled from a homodinuclear Cu(II) bridged by two water ligands. The Cu(II) centers exhibit distorted octahedral coordination; the equatorial plane is provided by one chelating tn ligand, one NDC2? ligand, one μ-H2O while the axial positions are occupied by H2O and μ-H2O. Strong intra- and/or intermolecular hydrogen bonds, also involving the crystallization water molecules, together with π–π stacking interactions, are involved in building up the supramolecule. The solid structure of compound (2) includes three water molecules of crystallization, the counter ion NDC2?, and a Cu(II) cationic complex in which the metal is six-coordinated in an axially elongated octahedron defined by two chelating tn ligands in the equatorial plane and two water ligands in the axial positions. Thermal analyses of (1) show two significant weight losses corresponding to water molecules (lattice and coordinated), followed by the decomposition of the network.  相似文献   

11.
Three oxamato-bridged copper(II) complexes of formula [(Cu(H(2)O)(tmen)Cu(tmen))(mu-Cu(H(2)O)(Me(2)pba))](n)((PF(6))(2))(n).2nH(2)O (1), [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(ClO(4))(2).4H(2)O (2), and [(Cu(H(2)O)(tmen)Cu(NCS)(tmen))(mu-Cu(H(2)O)(Me(2)pba))](2)(PF(6))(2).4H(2)O (3), where Me(2)pba = 2,2-dimethyl-1,3-propylenebis(oxamato) and tmen = N,N,N',N'-tetramethylethylenediamine, have been synthesized and characterized. Their crystal structures were solved. Complex 1 crystallizes in the monoclinic system, space group P2(1), with a = 15.8364(3) A, b =8.4592(2) A, c = 15.952 A, beta = 101.9070(10) degrees, and Z = 2. Complex 2 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.69530(10) A, b = 18.2441(3) A, c = 31.6127(5) A, beta = 90.1230(10) degrees, and Z = 4. Complex 3 crystallizes in the monoclinic system, space group P2(1)/c, with a = 6.68970(10) A, b = 18.150 A, c = 32.1949(4) A, beta = 90.0820(10) degrees, and Z = 4. The three complexes have a central core in common: a trinuclear Cu(II) complex with the two terminal Cu(II) ions blocked by N,N,N',N'-tetramethylethylenediamine. The structure of complex 1 consists of trinuclear cationic entities connected by hydrogen bonds to produce a supramolecular one-dimensional array. The structure of complexes 2 and 3 consist of trinuclear cationic entities linked by pairs by hydrogen bonds between the water molecule of the central Cu(II) and one oxygen atom of the oxamato ligand of the neighboring entity, forming a hexanuclear complex. The magnetic properties of the three complexes were studied by susceptibility vs temperature measurement. For complexes 1-3 the fit was made by the irreducible tensor operator (ITO). The values obtained were J(1) = -386.48 cm(-1) and J(2) = 1.94 cm(-1) for 1, J(1) = -125.77 cm(-1) and J(2) = 0.85 cm(-1) for 2, and J(1) = -135.50 cm(-1) and J(2) = 0.94 cm(-1) for 3. In complex 1, the coordination polyhedron of the terminal Cu(II) atoms can be considered as square pyramidal; the apical positions are filled by the oxygen atom from a water molecule in the former and a F atom of the hexafluorophosphate anion in the latter showing a quasi-planar [Cu(CuMe(2)pba)Cu] network. For complexes 2 and 3, the square pyramidal environment of the terminal Cu(II) ions was strongly modified. To our knowledge, this is the first time that the longest distance (apical) in complexes with oxamato derivatives and bidentate amines as blocking ligands has been reported in one of the oxamato arms. The great difference in J(1) values between 1 and the other two complexes is interpreted as an orbital reversal of the magnetic orbitals of the terminal Cu(II) ions in 2 and 3.  相似文献   

12.
We describe an efficient methodology for the preparation of new chiral zinc complexes by assembling dynamically racemic biphenol derivatives and chiral 1,2-diamines with suitable zinc(II) precursors. Mononuclear and dinuclear zinc(II) complexes were formed from differently substituted biphenols. The solid-state and solution structural characterization of the resulting compounds allowed us to demonstrate a preferential sense of induced axial chirality for mononuclear complexes, a phenomenon that was not observed for the dinuclear ones.  相似文献   

13.
The photophysical, electrochemical, and self-assembly properties of a novel triply fused Zn(II)-porphyrin trimer were investigated and compared to the properties of a triply fused porphyrin dimer and the analogous monomer. The trimer exhibited significantly red-shifted absorption bands relative to the corresponding monomer and dimer. Electrochemical investigations indicated a clear trend in redox properties amongst the three porphyrin structures, with the lowest oxidation potential and the lowest HOMO-LUMO gap exhibited by the triply fused trimer. This electrochemical behavior is attributed to the extensive pi-electron delocalization in the trimeric structure relative to the monomer and dimer. Additionally, it was found that the trimer forms extremely strong and nearly irreversible supramolecular interactions with single-walled carbon nanotubes (SWNTs), resulting in stable solutions of porphyrin-nanotube complexes in THF. Formation of these complexes required the addition of trifluoroacetic acid (TFA) to the solvent. This allowed the oligomers to make close contact with the nanotubes, enabling the formation of stable supramolecular assemblies. Atomic force microscopy (AFM) was used to observe the supramolecular porphyrin-nanotube complexes and revealed that the porphyrin trimer formed a uniform coating on the SWNTs. Height profiles indicated that nanotube bundles could be exfoliated into either individual tubes or very small bundles by exposure to the porphyrin trimer during sonication.  相似文献   

14.
Zhu  Yan Yu  Zhang  Xu  Zhou  Ya Nan  Sun  Zhen Gang  Jiao  Cheng Qi 《Transition Metal Chemistry》2021,46(8):593-600
Transition Metal Chemistry - Two Ni(II) carboxyphosphonates, namely [Ni(H4L)2] (1) and [Ni(H3L)(H2O)]·2H2O (2) (H5L=HOOCC6H4CH2N(CH2PO3H2)2), have been hydrothermally synthesized. Structural...  相似文献   

15.
A new E,E-stilbenophane was synthesised and characterised. The crystal structure of this cyclophane shows that this molecule has a cup-shaped structure, which hosts a phenyl ring of neighbouring molecule as guest in its cavity with a π–π distance of about 3.7 Å. Moreover, the NMR spectra and theoretical analysis (gauge-independent atomic orbitals (GIAO) and quantum theory of atoms in molecules (QTAIM)) suggest that the silver recognition by E,E-stilbenophane host molecules is based on cation–π interactions in which the π-electrons of the double bonds play a major role.  相似文献   

16.
Summary M2[VO(nta)(O2)]·xH2O, where M+ is NH inf4 p+ , K+ or Rb+ and nta is nitrilotriacetate, and Sr[VO(nta)(O2)]·2H2O were synthesized. The electronic spectra of aqueous KVO3-H2O2-H3nta-HClO4(KOH) solutions (pH 1.45–5.62) and the thermal decomposition of K2[VO(nta)(O2)]· 2H2O with active oxygen release at 275° C showed that the nta-monoperoxo complex is the most stable vanadium(V) peroxo complex so far investigated. The anhydrous potassium salt was prepared on heating the crystallohydrate under dynamic conditions. The i.r. spectra indicate the same anion structure in solution and in the solid state where nta is coordinated as a tetradentate ligand.  相似文献   

17.
The multiple application of reductive amination on primary amino groups of first and second generation poly(propyleneimine) dendrimers is used as a one-pot approach to introduce twice the amount of the oligosaccharide units as surface groups, compared to initially present amino groups in the first and second generation dendrimers. This was proven by (1)H NMR, MALDI-TOF-MS, and LILBID-MS analysis. The size of these dendrimers was determined by the hydrodynamic radius using pulsed field gradient NMR and dynamic light scattering. Molecular modeling confirmed the presence of dense-shell dendrimers. These dendrimers exhibit a generation dependent Cu(II)/dendrimer ratio in an aqueous environment, highlighting these materials as possible metal-carrier systems with a well-defined oligosaccharide protection shell for application in a biological environment.  相似文献   

18.
The dendrimer concentration dependence of the supramolecular structure formation of polystyrene-block-poly(acrylic acid) in dioxane/THF was investigated as a function of water content. The distribution as well as the localization of the dendrimer units inside the formed aggregates were determined by comparative studies of turbidity measurements and transmission electron microscopy. The strong and specific interactions present between the amine groups of the dendrimer (PAMAM) and the carboxylic acid residues of PAA in the copolymer have a strong influence on the structure formation. The PAMAM concentration as well as the character of the terminal groups of the dendrimer influence the strength of these interactions and consequently affect the structure formation process. As shown by fluorescence quenching experiments, on all supramolecular hierarchical structure levels, and specifically in vesicles, the dendrimer is coated by the PAA chains of the block copolymer due to the strong interactions; since the PAA blocks are connected to the PS blocks, which form the corona, the dendrimer is surrounded by PS chains and is thus encapsulated into the hydrophobic regions of the block copolymer aggregates. A high-resolution transmission electron microscopy image of a micelle is shown, in which the individual dendrimer cores are seen to be localized in the center of these aggregates, and thus, the structure proposed in the previous publication (Kroeger, A.; Li, X.; Eisenberg, A. Langmuir 2007, 23, 10732) is confirmed. Furthermore, the sizes of the resulting aggregates depend on the relative concentration of dendrimer, expressed as RAm/Ac (the ratio of amine to acid groups). With increasing RAm/Ac values, not only the sizes of the micelles but also the vesicle dimensions, especially vesicle wall thicknesses, increase, and this effect suggests the encapsulation of the dendrimer into the vesicle walls. Thus, the constitution of the vesicle structure is determined precisely. This feature allows the potential incorporation of a wide range of species into the vesicle walls or the center of the micelle cores.  相似文献   

19.
20.
Aiming at the generation of a silanone intramolecularly bound to platinum, we prepared pincer-type PSiP silanol Pt(II) complexes. While a stable silanone complex was not isolated, unusual reactivity modes, involving its possible intermediacy, were observed. Treatment of the new PSiH 2P-type ligand ( o-IPr 2PC 6H 4) 2SiH 2 ( 7) with (Me 2S) 2Pt(Me)Cl yields the pincer-type hydrosilane complex [{( o- iPr 2PC 6H 4) 2SiH}PtCl] ( 8), which upon Ir(I)-catalyzed hydrolytic oxidation gives the structurally characterized silanol complex [{( o- iPr 2PC 6H 4) 2SiOH}PtCl] ( 3). Complex 3, comprising in its structure the nucleophilic silanol fragment and electrophilic Pt(II)-Cl moiety, exhibits dual reactivity. Its reaction with the non-nucleophilic KB(C 6F 5) 4 in fluorobenzene leads to the ionic complex [{( o- iPr 2PC 6H 4) 2SiOH}Pt] (+) [(C 6F 5) 4B] (-) ( 9), which reacts with CO to yield the structurally characterized [{( o- iPr 2PC 6H 4) 2SiOH}PtCO] (+) [(C 6F 5) 4B] (-) ( 10). Treatment of 3 with non-nucleophilic bases leads to unprecedented rearrangement and coupling, resulting in the structurally characterized, unusual binuclear complex 11. The structure of 11 comprises two different fragments: the original O-Si-Pt(II)-Cl pattern, and the newly formed silanolate Pt(II)-H pattern, which are connected via a disiloxane bridge. Complex 9 undergoes a similar hydrolytic rearrangement in the presence of iPr 2NEt to give the mononuclear silanolate Pt(II)-H complex 17. Both these rearrangement-coupling reactions probably involve the inner-sphere generation of an intermediate silanone 14, which undergoes nucleophilic attack by the starting silanol 3 to yield complex 11, or adds a water molecule to yield complex 17. X-ray diffraction studies of 3, 10, and 11 exhibit a very short Si-Pt bond length (2.27-2.28 A) in the neutral complexes 3 and 11 that elongates to 2.365 A in the carbonyl complex 10. A significantly compressed geometry of the silanolate platinum(II)-hydride fragment B of the binuclear complex 11 features a Pt(2)-O(2)-Si(2) angle of 100.4 (3) degrees and a remarkably short Pt(2)...Si(2) [2.884 (3) A] distance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号