首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The reactivity of the two diatomic congeneric systems [CO].+ and [SiO].+ towards methane has been investigated by means of mass spectrometry and quantum‐chemical calculations. While [CO].+ gives rise to three different reaction channels, [SiO].+ reacts only by hydrogen‐atom transfer (HAT) from methane under thermal conditions. A theoretical analysis of the respective HAT processes reveals two distinctly different mechanistic pathways for [CO].+ and [SiO].+, and a comparison to the higher metal oxides of Group 14 emphasizes the particular role of carbon as a second‐row p element.  相似文献   

2.
Proton-coupled electron transfer (PCET) and hydrogen atom transfer (HAT) reactions of the phenoxyl/phenol couple are studied theoretically by using wave function theory (WFT) as well as DFT methods. At the complete active space self-consistent field (CASSCF) level, geometry optimization is found to give two transition states (TSs); one is the PCET type with two benzene rings being nearly coplanar, and the other is the HAT type with two benzene rings taking a stacking structure. Geometry optimization at the (semilocal) DFT level, on the other hand, is found to give only one transition state (i.e., the PCET-type one) and fail to obtain the stacking TS structure. By comparing various levels of theories (including long-range corrected DFT functionals), we demonstrate that the Hartree-Fock exchange at long range plays a critical role in obtaining the sufficient stacking stabilization of the present open-shell system, and that the sole addition of empirical dispersion correction to semilocal DFT functionals may not be adequate for describing such a stacking interaction. Next, we investigate the solvent effect on the PCET and HAT TS thus obtained using the reference interaction site model self-consistent field (RISM-SCF) method. The results suggest that the free energy barrier increases with increasing polarity of the solvent, and that the solvent effects are stronger for the PCET TS than the stacking HAT TS pathway. The reason for this is discussed based on the dipole moment of different TS structures in solution.  相似文献   

3.
The H.‐atom transfer (HAT) reaction is investigated in the gas phase, starting from two different entrance channels, O2.+/CH2X2 and CH2X2.+/O2 (X=F, Cl), that correspond to a step of hydride transfer and to HAT, respectively. Analysis of the spin and charge along the reaction pathway shows that HAT occurs through the same reacting configuration, irrespective of whether the reactants are formed within the complex or are free isolated species.  相似文献   

4.
A terminal iridium oxo complex with an open‐shell (S=1) ground state was isolated upon hydrogen atom transfer (HAT) from the respective iridium(II) hydroxide. Electronic structure examinations support large spin delocalization to the oxygen atom. Selected oxo transfer reactions indicate the ambiphilic reactivity of the iridium oxo moiety. Calorimetric and computational examinations of the HAT revealed a bond dissociation free energy for the IrO?H bond that is sufficient for hydrogen atom abstraction towards C?H bonds and small contributions from entropy and spin–orbit coupling to the HAT thermochemistry.  相似文献   

5.
A series of four α‐diketones placed as 1α‐pyruvoyl tethers on D ‐glucopyranose and D ‐glucopyranosiduronic acid skeletons was prepared in order to determine the influence of captodative and stereoelectronic effects on the regioselectivity of the hydrogen atom transfer (HAT) in Norrish type II photochemical processes. We observed that the 1,5‐HAT regioselectivity can be switched between the two potentially abstractable syn‐1,3‐diaxial hydrogens at H6 and H8. Highly unusual photoproducts from Norrish type II photoelimination and Norrish–Yang photocyclization initiated by the excited internal carbonyl group were obtained, in some cases in excellent synthetic yield. The 1,5‐HAT transition state in the Norrish type II photoelimination was investigated by photochemical experiments in the crystalline state.  相似文献   

6.
The reactivity of the heteronuclear oxide cluster [Ga2Mg2O5].+, bearing an unpaired electron at a bridging oxygen atom (Ob.?), towards methane and ethane has been studied using Fourier transform ion cyclotron resonance mass spectrometry (FT‐ICR‐MS). Hydrogen‐atom transfer (HAT) from both methane and ethane to the cluster ion is identified experimentally. The reaction mechanisms of these reactions are elucidated by state‐of‐the‐art quantum chemical calculations. The roles of spin density and charge distributions in HAT processes, as revealed by theory, not only deepen our mechanistic understanding of C? H bond activation but also provide important guidance for the rational design of catalysts by pointing to the particular role of doping effects.  相似文献   

7.
The reactivity of the cationic metal-carbon cluster FeC4+ towards methane has been studied experimentally using Fourier-transform ion cyclotron resonance mass spectrometry and computationally by high-level quantum chemical calculations. At room temperature, FeC4H+ is formed as the main ionic product, and the experimental findings are substantiated by labeling experiments. According to extensive quantum chemical calculations, the C−H bond activation step proceeds through a radical-based hydrogen-atom transfer (HAT) mechanism. This finding is quite unexpected because the initial spin density at the terminal carbon atom of FeC4+, which serves as the hydrogen acceptor site, is low. However, in the course of forming an encounter complex, an electron from the doubly occupied sp-orbital of the terminal carbon atom of FeC4+ migrates to the singly occupied π*-orbital; the latter is delocalized over the entire carbon chain. Thus, a highly localized spin density is generated in situ at the terminal carbon atom. Consequently, homolytic C−H bond activation occurs without the obligation to pay a considerable energy penalty that is usually required for HAT involving closed-shell acceptor sites. The mechanistic insights provided by this combined experimental/computational study extend the understanding of methane activation by transition-metal carbides and add a new facet to the dizzying mechanistic landscape of hydrogen-atom transfer.  相似文献   

8.
烃类是最基础的有机分子之一,具有品种丰富、来源广泛、价格低廉等优势,其多样性、选择性转化一直备受合成化学家关注.然而,这些化合物中通常存在多个键能高、极性低、相互间差异性小的C(sp3)-H键,因此,实现高效、选择性C-H官能化极具挑战性.近年来,可见光催化广泛应用于有机合成中,与氢转移催化相结合所发展的可见光氢转移光...  相似文献   

9.
Sulfenic acids play a prominent role in biology as key participants in cellular signaling relating to redox homeostasis, in the formation of protein-disulfide linkages, and as the central players in the fascinating organosulfur chemistry of the Allium species (e.g., garlic). Despite their relevance, direct measurements of their reaction kinetics have proven difficult owing to their high reactivity. Herein, we describe the results of hydrocarbon autoxidations inhibited by the persistent 9-triptycenesulfenic acid, which yields a second order rate constant of 3.0×10(6) M(-1) s(-1) for its reaction with peroxyl radicals in PhCl at 30?°C. This rate constant drops 19-fold in CH(3)CN, and is subject to a significant primary deuterium kinetic isotope effect, k(H)/k(D) = 6.1, supporting a formal H-atom transfer (HAT) mechanism. Analogous autoxidations inhibited by the Allium-derived (S)-benzyl phenylmethanethiosulfinate and a corresponding deuterium-labeled derivative unequivocally demonstrate the role of sulfenic acids in the radical-trapping antioxidant activity of thiosulfinates, through the rate-determining Cope elimination of phenylmethanesulfenic acid (k(H)/k(D) ≈ 4.5) and its subsequent formal HAT reaction with peroxyl radicals (k(H)/k(D) ≈ 3.5). The rate constant that we derived from these experiments for the reaction of phenylmethanesulfenic acid with peroxyl radicals was 2.8×10(7) M(-1) s(-1); a value 10-fold larger than that we measured for the reaction of 9-triptycenesulfenic acid with peroxyl radicals. We propose that whereas phenylmethanesulfenic acid can adopt the optimal syn geometry for a 5-centre proton-coupled electron-transfer reaction with a peroxyl radical, the 9-triptycenesulfenic is too sterically hindered, and undergoes the reaction instead through the less-energetically favorable anti geometry, which is reminiscent of a conventional HAT.  相似文献   

10.
Selective hydroarylation of dienes has potential to provide swift access to useful building blocks. However, most existing methods rely on dienes stabilised by an aromatic group and transmetallation or nucleophilic attack steps require electron-rich aryl coupling partners. As such, there are few examples which tolerate wide-spread heteroarenes such as pyridine. Whilst allylic C−H functionalisation could be considered an alternative approach, the positional selectivity of unsymmetrical substrates is hard to control. Here, we report a general approach for selective hydropyridylation of dienes under mild conditions using metal catalysed hydrogen-atom transfer. Photoinduced, reductive conditions enable simultaneous formation of a cobalt-hydride catalyst and the persistent radical of easily-synthesised pyridyl phosphonium salts. This facilitates selective coupling of dienes in a traceless manner at the C4-position of a wide-range of pyridine substrates. The mildness of the method is underscored by its functional-group tolerance and demonstrated by applications in late-stage functionalisation. Based on a combination of experimental and computational studies, we propose a mechanistic pathway which proceeds through non-reversible hydrogen-atom transfer (HAT) from a cobalt hydride species which is uniquely selective for dienes in the presence of other olefins due to a much higher relative barrier associated with olefin HAT.  相似文献   

11.
In the last decades, N-H bond activation of ammonia and C-N coupling processes have formed the focus of broad research activities. More recently, gas-phase experiments combined with computational studies have provided rather detailed insights into the mechanisms and the elementary steps of these two reaction types. Some of the multifarious observations made and results obtained for these two processes mediated by gaseous "bare" or ligated ions are outlined in this review article.  相似文献   

12.
The mechanism of N‐dealkylation mediated by cytochrome P450 (P450) has long been studied and argued as either a single electron transfer (SET) or a hydrogen atom transfer (HAT) from the amine to the oxidant of the P450, the reputed iron–oxene. In our study, tertiary anilinic N‐oxides were used as oxygen surrogates to directly generate a P450‐mediated oxidant that is capable of N‐dealkylating the dimethylaniline derived from oxygen donation. These surrogates were employed to probe the generated reactive oxygen species and the subsequent mechanism of N‐dealkylation to distinguish between the HAT and SET mechanisms. In addition to the expected N‐demethylation of the product aniline, 2,3,4,5,6‐pentafluoro‐N,N‐dimethylaniline N‐oxide (PFDMAO) was found to be capable of N‐dealkylating both N,N‐dimethylaniline (DMA) and N‐cyclopropyl‐N‐methylaniline (CPMA). Rate comparisons of the N‐demethylation of DMA supported by PFDMAO show a 27‐fold faster rate than when supported by N,N‐dimethylaniline N‐oxide (DMAO). Whereas intermolecular kinetic isotope effects were masked, intramolecular measurements showed values reflective of those seen previously in DMAO‐ and the native NADPH/O2‐supported systems (2.33 and 2.8 for the N‐demethylation of PFDMA and DMA from the PFDMAO system, respectively). PFDMAO‐supported N‐dealkylation of CPMA led to the ring‐intact product N‐cyclopropylaniline (CPA), similar to that seen with the native system. The formation of CPA argues against a SET mechanism in favor of a P450‐like HAT mechanism. We suggest that the similarity of KIEs, in addition to the formation of the ring‐intact CPA, argues for a similar mechanism of Compound I (Cpd I) formation followed by HAT for N‐dealkylation by the native and N‐oxide‐supported systems and demonstrate the ability of the N‐oxide‐generated oxidant to act as an accurate mimic of the native P450 oxidant.  相似文献   

13.
Hydroxylation of mesitylene by a nonheme manganese(IV)–oxo complex, [(N4Py)MnIV(O)]2+ ( 1 ), proceeds via one‐step hydrogen‐atom transfer (HAT) with a large deuterium kinetic isotope effect (KIE) of 3.2(3) at 293 K. In contrast, the same reaction with a triflic acid‐bound manganese(IV)‐oxo complex, [(N4Py)MnIV(O)]2+‐(HOTf)2 ( 2 ), proceeds via electron transfer (ET) with no KIE at 293 K. Interestingly, when the reaction temperature is lowered to less than 263 K in the reaction of 2 , however, the mechanism changes again from ET to HAT with a large KIE of 2.9(3). Such a switchover of the reaction mechanism from ET to HAT is shown to occur by changing only temperature in the boundary region between ET and HAT pathways when the driving force of ET from toluene derivatives to 2 is around ?0.5 eV. The present results provide a valuable and general guide to predict a switchover of the reaction mechanism from ET to the others, including HAT.  相似文献   

14.
In the literature, iron-oxo complexes have been isolated and their hydrogen atom transfer (HAT) reactions have been studied in detail. Iron-imido complexes have been isolated more recently, and the community needs experimental evaluations of the mechanism of HAT from late-metal imido species. We report a mechanistic study of HAT by an isolable iron(III) imido complex, L(Me)FeNAd (L(Me) = bulky β-diketiminate ligand, 2,4-bis(2,6-diisopropylphenylimido)pentyl; Ad = 1-adamantyl). HAT is preceded by binding of tert-butylpyridine ((t)Bupy) to form a reactive four-coordinate intermediate L(Me)Fe(NAd)((t)Bupy), as shown by equilibrium and kinetic studies. In the HAT step, very large substrate H/D kinetic isotope effects around 100 are consistent with C-H bond cleavage. The elementary HAT rate constant is increased by electron-donating groups on the pyridine additive, and by a more polar medium. When combined with the faster rate of HAT from indene versus cyclohexadiene, this trend is consistent with H(+) transfer character in the HAT transition state. The increase in HAT rate in the presence of (t)Bupy may be explained by a combination of electronic (weaker Fe=N π-bonding) and thermodynamic (more exothermic HAT) effects. Most importantly, HAT by these imido complexes has a strong dependence on the size of the hydrocarbon substrate. This selectivity comes from steric hindrance by the spectator ligands, a strategy that has promise for controlling the regioselectivity of these C-H bond activation reactions.  相似文献   

15.

Thermodynamic and kinetic studies of the hydrogen atom transfer (HAT) from hydroxyl (OH) groups of four kaempferol-based compounds, namely kaempferol, morin, morin-5*-sulfonate and morin-7-O-sulfate to hydroxyl radical (·OH), have been carried out using density functional theory (DFT) methods at the CAM-B3LYP/6–311++G(d,p) level equipped with polarizable continuum model (PCM) of solvation. All HAT reactions in aqueous solution are exothermic and spontaneous. For most compounds, the most preferable OH group for HAT is situated at position C3 (O3-H3) on the pyrone ring. The reaction potential of such a reactive group is found to be highest in morin-7-O-sulfate. The rate constants for the HAT reactions at different OH groups of each compound have been determined based on the transition state theory. The presence of substituents leads to the variation in either the characteristic interactions at the reactive site or the charge distribution on transition-state geometries, hence significantly affecting the kinetics of HAT. The highest rate of HAT is resulted for the OH group at position C4* (O4*-H4*) on the phenyl ring (ring B) of morin-5*-sulfonate because a hydrogen bond between ·OH and the sulfonate group favors the formation of transition state. However, for most compounds under study, the HAT reaction at O3-H3 initiated by ·OH is highly favorable both thermodynamically and kinetically.

  相似文献   

16.
"Give us insight, not numbers" was Coulson's admonition to theoretical chemists. This Review shows that the valence bond (VB)-model provides insights and some good numbers for one of the fundamental reactions in nature, the hydrogen-atom transfer (HAT). The VB model is applied to over 50 reactions from the simplest H + H(2) process, to P450 hydroxylations and H-transfers among closed-shell molecules; for each system the barriers are estimated from raw data. The model creates a bridge to the Marcus equation and shows that H-atom abstraction by a closed-shell molecule requires a higher barrier owing to the additional promotion energy needed to prepare the abstractor for H-abstraction. Under certain conditions, a closed-shell abstractor can bypass this penalty through a proton-coupled electron transfer (PCET) mechanism. The VB model links the HAT and PCET mechanisms conceptually and shows the consequences that this linking has for H-abstraction reactivity.  相似文献   

17.
Mechanistic insight into the homolytic cleavage of the O? H bond of water by the heteronuclear oxide cluster [Ga2Mg2O5].+ has been derived from state‐of‐the‐art gas‐phase experiments in conjunction with quantum chemical calculations. Three pathways have been identified computationally. In addition to the conventional hydrogen‐atom transfer (HAT) to the radical center of a bridging oxygen atom, two mechanistically distinct proton‐coupled electron‐transfer (PCET) processes have been identified. The energetically most favored path involves initial coordination of the incoming water ligand to a magnesium atom followed by an intramolecular proton transfer to the lone‐pair of the bridging oxygen atom. This step, which is accomplished by an electronic reorganization, generates two structurally equivalent OH groups either of which can be liberated, in agreement with labeling experiments.  相似文献   

18.
The direct α‐arylation of cyclic and acyclic ethers with heteroarenes has been accomplished through the design of a photoredox‐mediated C H functionalization pathway. Transiently generated α‐oxyalkyl radicals, produced from a variety of widely available ethers through hydrogen atom transfer (HAT), were coupled with a range of electron‐deficient heteroarenes in a Minisci‐type mechanism. This mild, visible‐light‐driven protocol allows direct access to medicinal pharmacophores of broad utility using feedstock substrates and a commercial photocatalyst.  相似文献   

19.
The enantiomeric differentiation of a series of chiral β‐amino alcohols (A) is attempted, for the first time, by applying the kinetic method using L‐proline, L‐tryptophan, 4‐iodo‐L‐phenylalanine or 3, 5‐diiodo‐L‐tyrosine as the chiral references (Ref) and Cu2+ or Ni2+ ion (M) as the central metal ion. The trimeric diastereomeric adduct ions, [M+(Ref)2+A‐H]+, formed under electrospray ionization conditions, are subjected for collision‐induced dissociation (CID) experiments. The products ions, formed by the loss of either a reference or an analyte, detected in the CID spectra are evaluated for the enantiomeric differentiation. All the references showed enantiomeric differentiation and the Rchiral values are better for the aromatic alcohols than for aliphatic alcohols. Notably, the Rchiral values of the aliphatic amino alcohols enhanced when Ni2+ is used as the central metal ion. The experimental results are well supported by computational studies carried out on the diastereomeric dimeric complexes. The computational data of amino alcohols is correlated with that of amino acids to understand the structural interaction of amino alcohols with reference molecule and central metal ion and their role on the stabilization of the dimeric complexes. Application of flow injection MS/MS method is also demonstrated for the enantiomeric differentiation of the amino alcohols. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

20.
Kinetic and mechanistic studies on the intermolecular activation of strong C?H bonds of alkanes by a (salen)ruthenium(VI) nitride were performed. The initial, rate-limiting step, the hydrogen atom transfer (HAT) from the alkane to Ru(VI) ?N, generates Ru(V) ?NH and RC(.) HCH(2) R. The following steps involve N-rebound and desaturation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号