首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the last few years, visible-light initiated organic transformations have attracted increasing attention. The development of visible-light-promoted photocatalytic reactions, which enable rapid and efficient synthesis of fine chemicals, is highly desirable from the viewpoint of cost, safety, availability, and environmental friendliness. In this Minireview, recent advances made in this fast developing area of research are discussed.  相似文献   

2.
Photocatalysis is a valuable and versatile method to perform a variety of chemical transformations under ambient temperatures and pressures using mild visible light. This work showcases an example of fluorescein-functionalized polymers grafted to micro-scale glass beads as heterogeneous photoredox catalysts. X-ray photoelectron spectroscopy and thermogravimetric analysis were used to analyze the resulting functional glass beads. Model reactions that are demonstrated include a cyclic condensation and a radical dehalogenation that can both be performed to high yields. Successful recyclability of the fluorescein polymer brush beads is demonstrated with detailed characterization confirming that photocatalytic polymer brushes remain tethered to the surface. As such, this allows for purification and reuse of the heterogeneous photocatalyst beads after simple filtration.  相似文献   

3.
Aerobic oxidation of a series of 2,3-dihydro-1H-perimidines to the corresponding 4- and 6-perimidinones via visible light photoredox catalysis using Ru(bpy)32+ as a catalyst was reported. The scope and limitation of this oxidation were investigated and a possible photochemical mechanism was proposed.  相似文献   

4.
Catalyzed by Ir(dFCF3ppy)2(dtbbpy)PF6, several aroyl methylidenemalonates were synthesized in good to excellent yields via visible light photoredox-catalyzed the oxidative ring-opening of cyclopropenyl carboxylate derivatives. The possible mechanism of oxidative quenching cycle was proposed.  相似文献   

5.
Six iron complexes (FeCs) with various ligands have been designed and synthesized. In combination with additives (e.g., iodonium salt, N‐vinylcarbazole, amine, or chloro triazine), the FeC‐based systems are able to efficiently generate radicals, cations, and radical cations on a near UV or visible light‐emitting diode (LED) exposure. These systems are characterized by an unprecedented reactivity, that is, for very low content 0.02% FeC‐based systems is still highly efficient in photopolymerization contrary to the most famous reference systems (Bisacylphosphine oxide) illustrating the performance of the proposed catalytic approach. This work paves the way for polymerization in soft conditions (e.g., on LED irradiation). These FeC‐based systems exhibit photocatalytic properties, undergo the formation of radicals, radical cations, and cations and can operate through oxidation or/and reduction cycles. The photochemical mechanisms for the formation of the initiating species are studied using steady state photolysis, cyclic voltammetry, electron spin resonance spin trapping, and laser flash photolysis techniques. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 42–49  相似文献   

6.
Single-chain polymer nanoparticles (SCNPs) are emerging as versatile catalytic platforms that provide excellent control over solubility. The confined nature of SCNPs can improve the rate of catalysis. While significant headway has been made in thermally-induced transition-metal catalysis with SCNPs, light-activated SCNP catalysts have received little attention. We are developing triarylpyrylium tetrafluoroborate (TPT)-functionalized SCNPs as oxidative photocatalysts. Herein, we comprehensively study the impact of light source on both SCNP compaction and TPT absorbance through gel-permeation chromatography and UV/Vis spectroscopy. We observe that compaction is expedited using light sources that excite the photocatalyst (e.g., blue LEDs), which is attributed to the ability of TPT to dimerize sytrenics under similar photoredox conditions. The resultant metal-free SCNP photocatalysts enable the oxidation of benzyl alcohols in good yields. The SCNP is further investigated for the amidation of 4-bromobenzaldehyde, wherein it affords higher yields of the benzamide product compared to both small-molecule and unfolded polymer controls. We attribute the combined results to the colocalization of the TPT photoredox catalyst and pyrene electron relay within the SCNP, which likely aids in single-electron transfer processes. The scope of amidation reactions was also extended to other aryl aldehydes, wherein deactivated substrates afforded the highest yield of the desired amide.  相似文献   

7.
Iridium(III) complexes were designed and evaluated as efficient photoinitiators of polymerization reactions in combination with iodonium salts and silanes. Mechanistically, these reactions were shown to proceed through oxidative photoredox catalysis, generating aryl and silyl radicals under very soft irradiation conditions (blue LED, xenon lamp, and even sunlight). These radicals can initiate the free radical polymerization of acrylates or can be oxidized during the catalytic cycle to promote the ring-opening polymerization of epoxy monomers. Remarkably, both the (photo)chemical reactivity and the practical efficiency are dramatically affected by the ligands. In addition, the central role played by the oxidation ability of the excited state of the photocatalyst is discussed.  相似文献   

8.
Combining single electron transfer between a donor substrate and a catalyst‐activated acceptor substrate with a stereocontrolled radical–radical recombination enables the visible‐light‐driven catalytic enantio‐ and diastereoselective synthesis of 1,2‐amino alcohols from trifluoromethyl ketones and tertiary amines. With a chiral iridium complex acting as both a Lewis acid and a photoredox catalyst, enantioselectivities of up to 99 % ee were achieved. A quantum yield of <1 supports the proposed catalytic cycle in which at least one photon is needed for each asymmetric C? C bond formation mediated by single electron transfer.  相似文献   

9.
10.
结合可见光促进氧化还原和镍催化的碳碳键合成研究,是对过渡金属催化的交叉偶联反应的重要补充,具有广阔的发展空间和应用前景,是近年来有机光化学合成的前沿热点领域之一。本文依据反应设计的模式划分,小结目前该领域的研究进展。  相似文献   

11.
A new visible‐light‐induced trifluoromethylation of isonitrile‐substituted methylenecyclopropanes is developed. A range of substituted 6‐(trifluoromethyl)‐7,8‐dihydrobenzo[k]phenanthridine derivatives are readily furnished by this newly developed tandem reaction with moderate to good yields. This reaction allows the direct formation of two six‐membered rings and three new C?C bonds, including the C?CF3 bond, under visible light irradiation.  相似文献   

12.
13.
While the generation of aryl radicals by photoredox catalysis under reductive conditions is well documented, it has remained challenging under an oxidative pathway. Because of the easy photo-oxidation of alkyl bis-catecholato silicates, a general study of phenyl silicates bearing substituted catecholate ligands has been achieved. The newly synthesized phenyl silicates have been fully characterized, and their reactivity has been explored. It was found that, thanks to the substitution of the catecholate moiety, notably with the 4-cyanocatecholato ligand, the phenyl radical could be generated and trapped. Computational studies provided a rationale for these findings.  相似文献   

14.
Acridone as a new kind of visible light photocatalyst has been developed to catalyze metal free atom transfer radical polymerization (ATRP). The photocatalyst possess low excited state potential as can undergo an oxidative quenching pathway to initiate ATRP of vinyl monomers. Kinetic study and light on/off reaction demonstrate the “living”/controlled nature of the polymerization by light. Block copolymers can be achieved by using PMMA as macroinitiator to reinitiate polymerization of other vinyl monomers, which shows highly preserved Br chain-end functionality in the synthesized polymers. Moreover, the polymerization can be conducted under air atmosphere as most photocatalysts need anaerobic condition, which may give inspiration of further application of this kind of photocatalyst.  相似文献   

15.
A room‐temperature, visible‐light‐driven N‐centered iminyl radical‐mediated and redox‐neutral C?C single bond cleavage/radical addition cascade reaction of oxime esters and unsaturated systems has been accomplished. The strategy tolerates a wide range of O‐acyl oximes and unsaturated systems, such as alkenes, silyl enol ethers, alkynes, and isonitrile, enabling highly selective formation of various chemical bonds. This method thus provides an efficient approach to various diversely substituted cyano‐containing alkenes, ketones, carbocycles, and heterocycles.  相似文献   

16.
Following the light: Photoredox catalysis along with aminocatalysis have proved to be the right combination for one of the most challenging asymmetric transformation in organic synthesis: the direct intermolecular α‐alkylation of aldehydes.

  相似文献   


17.
The polarity reversal (umpolung) reaction is an invaluable tool for reversing the chemical reactivity of carbonyl and iminyl groups, which subsequent cross‐coupling reactions to form C?C bonds offers a unique perspective in synthetic planning and implementation. Reported herein is the first visible‐light‐induced polarity‐reversed allylation and intermolecular Michael addition reaction of aldehydes, ketones, and imines. This chemoselective reaction has broad substrate scope and the engagement of alkyl imines is reported for the first time. The mechanistic investigations indicate the formation of ketyl (or α‐aminoalkyl) radicals from single‐electron reduction, where the Hantzsch ester is crucial as the electron/proton donor and the activator.  相似文献   

18.
In this work, an efficient and facile method for the preparation of 5-perfluoroalkylated uracils and uracil nucleosides through visible-light-mediated reaction has been developed. The reaction processes in high efficiency under mild reaction conditions and show broad substrate scope by employing commercial available perfluoroalkyl sources, thus demonstrates high potent application in life and medicinal science.  相似文献   

19.
20.
N-Substituted-3(10H)-acridones have been established as visible-light organic photocatalyst. These photosensitizers are efficient for oxidative coupling reaction of N-aryl tetrahydroisoquinolines with various nucleophiles. Notably, N-methyl-3(10H)-acridone (Ia) is stable and can be effectively prepared. It is a water-soluble and atom-economic catalyst, and thus holds promise for green chemical applications. Mechanistic studies confirm a single electron transfer (SET)-induced radical process and a rate-limiting step. Analysis of the photocatalytic reactivity?structure relationship reveals that the acridones are robust and tunable photosensitizers for photoredox catalysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号