首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PEG was grafted onto chitosan regioselectively at the hydroxyl groups with phthaloylchitosan as an intermediate. After the graft reaction, the phthaloyl groups were deprotected to give chitosan-g-PEG copolymers with free amino groups. The chemical structure of the graft copolymers was confirmed by FT-IR, (1)H and (13)C NMR spectroscopy. The resulting graft copolymers showed improved thermal stability compared to the original chitosan, and showed a lower thermal transition temperature at around 185 degrees C. Chitosan-g-PEG exhibited a high affinity not only for aqueous acid but also for some organic solvents because of the presence of abundant free amino groups and PEG branches, and it exhibited higher hygroscopicity and moisture retention ability than chitosan. [structure: see text]  相似文献   

2.
Solvothermal process was developed to graft maleic anhydride (MAH) onto poly(ethylene 1-octene) (POE). Fourier transform infrared spectra (FT-IR) and 1H NMR spectra confirmed that maleic anhydride was successfully grafted onto the POE. The influences of MAH content, initiator concentration, POE concentration, reaction temperature, reaction time and solvents on the graft copolymerization were investigated through both of the grafting degree (GD) and gel content (GC). The results demonstrated that high grafting degree (up to 10.85%) could be obtained while the gel content was still low. Further studies revealed that POE-g-MAH could also be achieved in poor solvents of POE through this method.  相似文献   

3.
Two reaction schemes were developed to covalently graft poly(ethylene glycol) (PEG) chains on poly(ethylene-co-acrylic acid) (EAA) surfaces. The schemes involved surface grafting of linker molecules L-lysine or polypropyleneamine dendrimer (AM64), with subsequent covalent bonding of PEG chains to the linker molecules. NHS and EDC were used to activate the carboxylic acid groups of the EAA in the outermost region of the film, estimated to be 20 nm by ATR-FTIR spectroscopy. XPS demonstrated that the conversion of this activation step was almost 100% in the detected region. After activation, L-lysine or dendrimer was grafted onto the EAA surface, followed by PEG grafting. Combining the data from ATR-FTIR, XPS, and contact angle goniometry, it was found that the PEG chains were grafted on the surface of the EAA film and larger surface coverage was achieved when the dendrimer was used as the intermediate layer. This surface also had the lowest water contact angle.  相似文献   

4.
Hydroxyapatite (HA) has many applications in medicine as a biocompatible and bioactive biomaterial. Numerous studies have shown that modification of the HA surface can improve its biological and chemical properties. However, little is known about the surface properties of modified materials. In this paper the influence of organic polymers: polyethylene glycol (PEG) and polyhydroxyethyl methacrylate (pHEMA) on the surface properties and surface chemistry of hydroxyapatite (HA) is presented. The surface properties of modified HA were characterised by the FT-IR, XPS, BET, and zeta potential measurements. Specific surface area was determined by BET. Infrared and XPS spectra confirmed the presence of PEG and pHEMA on the surface of HA. The BET N2 adsorption revealed slight changes in the HA surface chemistry after grafting modification. The surface chemical properties of the HA were considered to be based on the zeta potential. The decrease in zeta potential results in the increasing stability of the modified material and also in the reduction of bacterial adhesion. The reaction for surface modification of HA is proposed and described.  相似文献   

5.
Loris Pietrelli 《Adsorption》2013,19(5):897-902
Poly(ethylene glycol) (PEG) is a water-soluble polymer commonly found in industrial and domestic wastewaters. In this study the adsorption onto granular activated carbon (GAC) of PEG, of different molecular weights, from aqueous solutions was examined to evaluate its applicability to wastewater treatment. Batch kinetic models have been tested to predict the rate constant of adsorption. The amount of PEG adsorbed on activated carbon depends mainly on the pH, the MW and on the solution characteristics. The adsorption at fixed temperature decrease by MW (PEG-8000 < PEG-3350 < PEG-1450) a polymer chain conformation modification can explain these effect. The large values of adsorption capacity (>350 mg/g) at low and high pH values show a great potential for GAC. The adsorption process can be described well with the Langmuir and the pseudo first order equation. The effective intraparticle diffusion coefficients of PEG molecules in the GAC adsorbent varying according to the MW values in the range 8.45 × 10?3–9.71 × 10?7.  相似文献   

6.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

7.
The adsorption of poly(ethylene glycol) (PEG) and ammonium poly(methacrylate) (APMA) onto alumina has been examined both individually and in combination. The adsorption density of APMA was found to be higher than that of PEG onto alumina. The adsorption isotherms of PEG and APMA for alumina exhibited a Langmuirian behavior. The adsorption density of PEG was significantly reduced in the presence of APMA, but the reverse was not true. About 60% desorption of PEG from alumina was achieved, while in the case of APMA the amount desorbed was only 10% in the pH range of 3-6. The zeta potential values of alumina were decreased and the isoelectric point (i.e.p.) values were shifted toward acidic pH values, proportional to the concentration of APMA added. However, such changes in the electrokinetic behavior were not observed by the addition of PEG. The dispersion behavior of alumina in the combined presence of PEG and APMA essentially followed the trends obtained for the alumina-APMA system, corroborating the electrokinetic measurements. Coprecipitation tests confirmed complexation between aluminum species and APMA in the bulk solution, but not with PEG. The interaction between alumina and PEG is primarily governed by hydrogen-bonding forces, while both hydrogen bonding and chemical interaction are involved in the case of the alumina-APMA system. FTIR spectroscopic studies provided evidence in support of the interaction mechanisms proposed.  相似文献   

8.
The poly(3-hydroxybutyrate)(PHB)/poly(ethylene glycol)(PEG) grafting copolymer was successfully prepared by PHB and acrylate groups ended PEGM using AIBN as initiator. The crystallization behavior, thermal stability and environmental biodegradability of PHB/PEG grafting copolymers were investigated with differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), wide angle X-ray diffraction (WAXD), scanning electron microscopy (SEM), and Biodegradation test in vitro. In the results, all the grafting copolymers were found to show the X-ray diffraction arising from the PHB crystal lattice, while none of the PEG crystallized peaks could be found even though the graft percent reached 20%. This result indicated that PEG molecules were randomly grafted onto PHB chain. The thermal properties measured by DSC showed that the melting temperature(Tm) and glass transition temperature (Tg) were both shifted to lower temperature with the graft percent increasing, and this broadened the narrow processability window of PHB. According to TGA results, the thermal stability of the grafting copolymers is not changed compared to pure PHB. From the biodegradation test, it could be concluded that degradation occurred gradually from the surface to the inside and that the degradation rate could be adjusted by the PEG grafting ratio. In another words, the biodegradation profiles of PHB/PEG grafting copolymer can be controlled. These properties make PHB/PEG grafting copolymer have promising potential applications especially in agriculture fields.  相似文献   

9.
After one atmospheric pressure plasma treatment of poly(ethylene terephthalate) (PET) film, acrylic acid (AAc) in aqueous solution was successfully graft‐copolymerized onto PET films. The effects of reaction time, AAc monomer concentration and reaction temperature on grafting behavior of AAc were systematically studied. Possible reaction kinetics of plasma‐induced graft copolymerization, starting from initial hydroperoxide decomposition, were proposed. Through the Arrhenius analysis about graft copolymerization kinetics of AAc monomers on PET surface, it was revealed that the activation energies of decomposition, propagation and termination were 98.4, 63.5, and 17.5 kJ/mol, respectively. The temperature around 80 °C was favorable not only for the formation of oxide radicals through the thermal decomposition of hydroperoxide on PET surface but also for the extension of graft copolymer chain through direct polymer grafting. Poly(acrylic acid) (PAAc) grains grafted onto PET surfaces possessed relatively uniform size and both PAAc grain size and surface roughness increased with increasing the grafting degree of AAc. The increase of grain size with increasing grafting degree results from the possibility of forming long chain graft copolymers and their shielding of reactive sites. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1594–1601, 2008  相似文献   

10.
Radiation-induced grafting of dimethylaminoethylmethacrylate onto poly(propylene) films by preirradiation method in presence of air was investigated. The effects of monomer concentration, preirradiation dose and temperature on grafting value as well as the effect of grafting value on crystallinity of the modified polymer were determined.  相似文献   

11.
The infrared absorption of poly(ethylene glycol) was measured in the molten state. Characteristic bands of the molten state were identified. Normal vibrations and frequency distributions were treated for various conformation models with CH2CH2O repeat units. The infrared absorption peaks of the molten state closely correspond to the frequency distribution peaks of the TGT conformation with gauche O? CH2? CH2? O groups, although infrared bands due to trans O? CH2? CH2? O groups are also observed. Vibrational assignments of the infrared bands and Raman lines were made on the basis of potential energy distributions.  相似文献   

12.
Coumarin-functionalized poly(ethylene glycol) (PEG) monols and diols were isothermally crystallized at temperatures between 20 and 35 °C before and after exposure to approximately 110 J cm−2 of ultra-violet A (λ > 300 nm, UVA) irradiation. Irradiation dimerized the coumarin groups and chain-extended the coumarin-functionalized PEG oligomers. The higher molecular weights reduced the crystal growth rate by as much as 50% compared to the non-irradiated coumarin-functionalized PEG oligomers under ambient crystallization conditions. Hoffman’s kinetic nucleation theory was utilized to evaluate the types of nucleation that occurred for the coumarin-functionalized PEG diols (COU-PEG-COU). Crystallization regimes II and III were observed for the coumarin-modified PEG oligomers before and after exposure to UVA light.  相似文献   

13.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

14.
The surface of polyethersulfone (PES) membrane was modified by blending triblock copolymers of methoxyl poly(ethylene glycol)-polyurethane-methoxyl poly(ethylene glycol) (mPEG-PU-mPEG), which were synthesized through solution polymerization with mPEG Mns of 500 and 2000, respectively. The PES and PES/mPEG-PU-mPEG blended membranes were prepared through spin coating coupled with liquid-liquid phase separation. FTIR and (1)H NMR analysis confirmed that the triblock copolymers were successfully synthesized. The functional groups and morphologies of the membranes were studied by ATR-FTIR and SEM, respectively. It was found that the triblock copolymers were blended into PES membranes successfully, and the morphologies of the blended membranes were somewhat different from PES membrane. The water contact angles and platelet adhesion were decreased after blending mPEG-PU-mPEG into PES membranes. Meanwhile, the activated partial thromboplastin time (APTT) for the blended membranes increased. The anti-protein-fouling property and permeation property of the blended membranes improved obviously. SEM observation and 3-(4, 5-Dimethylthiazol-2-yl)-2, 5-diphenyl tetrazolium bromide (MTT) assay proved the surfaces of the blended membranes promoted human hepatocytes adhesion and proliferation better than PES membrane.  相似文献   

15.
16.
17.
Poly(ethylene glycol) grafted poly(L -lactide) was prepared by ring opening polymerization of L -lactide and epoxy-terminated poly(ethylene glycol) methyl ether (PEGME). Stannous octoate and Al(Et)3·0.5 H2O were tested as polymerization catalysts, and Al(Et)3·0.5 H2O was found to be more effective for the ring-opening of the epoxy group of the modified PEGME monomer. The synthesized polymers were characterized by NMR and the efficiency of the incorporation of epoxy-terminated PEGME in the copolymer was determined.  相似文献   

18.
Time-resolved light scattering was employed to investigate kinetics of phase separation in mixtures of poly (ethylene glycol monomethylether) (PEGE)/poly (propylene glycol) (PPG) oligomers. Phase diagrams for PEGE/PPG of varying molecular weights were established by means of cold point measurements. The oligomer mixtures reveal an upper critical solution temperature (UCST). Several temperature quench experiments were carried out with a 60/40 PEGE/PPG blend by rapidly quenching from a single phase (69°C) to two-phase temperatures (66–61°C) at 1°C intervals. As is typical for oligomer mixtures, the early stage of spinodal decomposition (SD) was not detected. The kinetics of phase decomposition was found to be dominated by the late stage of SD. Time-evolution of scattering intensity was analyzed in accordance with nonlinear and dynamical scaling theories. The time dependence of the peak intensity Im and the corresponding peak wavenumber qm was found to follow the power-law {Im(t)? tα, qm(t)? t} with the values of α = 3 ± 0.3 and β = 1 ± 0.2, which are very close to the values predicted by Siggia. This process has been attributed to a coarsening mechanism driven by surface tension. In the temporal scaling analysis, the structure function reveals university with time, suggesting self-similarity. Phase separation dynamics in 60/40 PEGE/PPG resembles the behavior predicted for off-critical mixtures.  相似文献   

19.
Poly(ethylene terephthalate) [PET] fibre wastes from an industrial manufacturer was depolymerised using excess ethylene glycol [EG] in the presence of metal acetate as a transesterification catalyst. The glycolysis reactions were carried out at the boiling point of ethylene glycol under nitrogen atmosphere up to 10 h. Influences of the reaction time, volume of EG, catalysts and their concentrations on the yield of the glycolysis products were investigated. The glycolysis products were analysed for hydroxyl and acid values and identified by different techniques, such as HPLC, 1H NMR and 13C NMR, mass spectra, and DSC. It was found that the glycolysis products consist mainly of bis(hydroxyethyl)terephthalate [BHET] monomer (>75%) which was effectively separated from dimer in quite pure crystalline form.  相似文献   

20.
Water‐soluble poly(ethylene glycol) derivatives with multiple “clickable” mercapto groups or double bonds were facilely synthesized in a large scale by direct polycondensation of oligo(ethylene glycol) diol with mercaptosuccinic acid or maleic acid catalyzed by scandium trifluoromethanesulfonate under mild conditions. Injectable hydrogels containing doxorubicin hydrochloride (DOX · HCl) could be rapidly formed using these poly(ethylene glycol) derivatives as precursors via in situ thiol‐ene “click” reaction under physiological conditions without light, initiator, or metal catalyst. DOX · HCl could be sustained released from the hydrogels as a result of the hindrance of the three dimensional hydrogel network on the drug molecules, which makes this kind of DOX‐loaded hydrogels a promising candidate for localized tumor chemotherapy. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号