首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A technique was developed to perform automated velocity measurements from a sequence of particle images. A very thin sheet of laser light allows determination of essentially two-dimensional velocity profiles in very small conduits. A four image sequence was captured by a microcomputer-based frame grabber. After thresholding to eliminate particles not perfectly centered in the sheet of light, the sequence of pseudo-colored images of a given particle is used to determine its velocity. By measuring several two-dimensional velocity profiles across a square channel, the complete three-dimensional velocity profile was assembled. The experimentally measured velocity profile agrees closely with the known theoretical velocity profile for flow in a square channel.  相似文献   

2.
Flow mapping of the mercury flow   总被引:1,自引:0,他引:1  
 An ultrasonic velocity profile (UVP) method has been successfully applied to the investigation of mercury flow contained in a stainless steel wall in the configuration of a liquid metal target of a spallation neutron source called SINQ at the Paul Scherrer Institute. One- and two-dimensional stationary flow has been fully investigated in the form of velocity profiles. Using velocity profiles obtained by the UVP method, a two-dimensional flow map was efficiently produced. A steady state vector map was successfully made and time dependent flow mapping is feasible. Received: 17 May 2000 / Accepted: 27 December 2000 Published online: 29 November 2001  相似文献   

3.
Detonation combustion of hydrogen-air mixtures entering an axisymmetric convergent-divergent nozzle at a supersonic velocity is considered. The nozzle geometry does not ensure gas self-ignition; for this reason, forced ignition is used, which, under certain conditions, leads to the formation of stationary detonation combustion in the case of both uniform and nonuniform hydrogen distribution at the channel entry. The nonlinear problem of the stability of these combustion regimes against periodic disturbances of the hydrogen concentration in the oncoming flow is numerically solved. The study is performed on the basis of the two-dimensional gasdynamic Euler equations for a multicomponent reacting gas. A detailed model of chemical reactions is used.  相似文献   

4.
With the aid of particle image velocimetry (PIV) momentary two-dimensional velocity fields of dilute cationic surfactant solutions are measured in an annular gap between coaxial cylinders. In the shear-induced state the velocity profiles of the surfactant solutions differ from a Couette profile drastically: Time dependent flows with high shear rates near the walls are observed. The flow is almost one-dimensional, velocity components in radial or axial direction cannot be detected. The velocity profile can exhibit a local maximum. A macroscopic heterogeneous structure is observed, domains with high viscosity alternate with low viscosity regions. Elastic phenomena are observed in a relaxation experiment. Existing rheometric data of cationic surfactant solutions in the shear-induced state give only apparent viscosities.  相似文献   

5.
A method is developed to infer the wall shear stress for three-dimensional turbulent boundary layers based on the assumption that the resultant surface shear stress and the effective velocity based on Prahlad's model correlates the velocity profile into its two-dimensional form. Existence of the near wall region similarity has been demonstrated for three-dimensional turbulent boundary layers.  相似文献   

6.
Based on the hydrodynamic stability theory of distorted laminar flow and the kind of distortion profiles on the mean velocity in parallel shear flow given in paper [1], this paper investigates the linear stability behaviour of parallel shear flow, presents unstable results of plane Couette flow and pipe Poiseuille flow to two-dimensional or axisymmetric disturbances for the first time, and obtains neutral curves of these two motions under certain definition.  相似文献   

7.
The problem of the origin and evolution of two-dimensional waves of unstable disturbances in the boundary layer on an airfoil in the region of adverse pressure gradient in the preseparation flow region is solved numerically. The stability of the experimental velocity profiles, including the inflected profiles, is studied. As a result of the calculations, the boundaries of the instability region and the parameters of the maximally unstable disturbances (frequency, growth rate, wavelength, and propagation velocity) are determined for each velocity profile. The characteristics obtained in the present work are in good agreement with the real experimental parameters of instability waves. Institute of Theoretical and Applied Mechanics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 126–132, January–February, 1999.  相似文献   

8.
Using the Coles additive law of the wall and law of the wake for the mean velocity profile of a two-dimensional turbulent boundary layer, a differential equation for the friction and wake parameters is derived from the momentum integral equation with a view to finding out the conditions under which the boundary layer can exhibit equilibrium. It is predicted that equilibrium is possible for boundary layers in favorable pressure gradient over smooth as well as k-type rough walls. When the roughness height is allowed to increase linearly with the streamwise distance, equilibrium exists also in zero pressure gradient. For a d-type rough wall, equilibrium is possible for a certain range of pressure gradients, from favorable to adverse. Most of the predictions are verified by evaluating the friction and wake parameters from the available experimental data on mean velocity measurements.  相似文献   

9.
Previous analytical work on stability of fluid-conveying pipes assumed a uniform velocity profile for the conveyed fluid. In real fluid flows, the presence of viscosity leads to a sheared region near the wall. Earlier studies correctly note that viscous forces do not affect the dynamics of the system since these forces are balanced by pressure drop in the conveyed fluid. Although viscous shear has not been ignored in these studies, a uniform velocity profile assumes that the sheared region is infinitely thin. Prior analysis was extended to account for a fully developed non-uniform profile such as would be encountered in real fluid flows. A modified, highly tractable equation of motion was derived, which includes a single additional parameter to account for the true momentum of the fluid. This empirical parameter was determined by numerical analysis over the Reynolds number range of interest. The stability of cantilever pipes conveying fluid with two types of non-uniform velocity profile was assessed. In the first case, the profile was a function of Reynolds number and transition to turbulence occurred before the onset of flutter instability. This case had stability properties similar to the uniform velocity case except in specific narrow regions of the parameter space. The second case required that the Reynolds number be such that the flow was always laminar. For this case, lower fluid velocity was required to achieve instability, and the oscillation frequency at instability was considerably lower over much of the parameter space, compared to the uniform case.  相似文献   

10.
生物芯片微通道周期性电渗流特性   总被引:5,自引:1,他引:4  
吴健康  王贤明 《力学学报》2006,38(3):309-315
以双电层的Poisson-Boltzmann方程和黏性不可压缩流体运动的Navier-Stokes方程为 基础,提出二维均匀微通道周期电渗流的解析解. 分析结果表明,周期电渗流速度大 小不但与双电层特性和外电场有关, 而且与流动雷诺数(Re = \omega h^2/\nu )密切相关. 随雷诺数增加,双电层滑移速度下降. 当离开固壁距离增加时,双电层以外区域流动速度快 速衰减,速度滞后相位角明显增加. 研究发现在微通道有波浪状速度剖面. 给出在低雷 诺数时的周期电渗流渐近解,它的速度振幅与定常电渗流速度相同,并具有柱栓式速度分布 形态. 还得到在微通道宽对双电层厚的比值(\kappa h)很小时,Debye-H\"{u}ckel近似 的周期电渗流解, 并与解析解进行分析比较 微通道,双电层,周期电渗流,雷诺数  相似文献   

11.
We study the stability of the flow which forms in a plane channel with influx of an incompressible viscous fluid through its porous parallel walls. Under certain assumptions the study of the stability reduces to the solution of modified Orr-Sommerfeld equation accounting for the transverse component of the main-flow velocity. As a result of numerical integration of this equation we find the dependence of the local critical Reynolds number on the blowing Reynolds number R0, which may be defined by two factors: the variation of the longitudinal velocity profile with R0 and the presence of the transverse velocity component. A qualitative comparison is made of the computational results with experimental data on transition from laminar to turbulent flow regimes in channels with porous walls, which confirms that it is necessary to take into account the effect of the transverse component of the main-flow velocity on the main-flow stability in the problem in question.Flows in channels with porous walls are of interest for hydrodynamic stability theory in view of the fact that they can be described by the exact solutions of the Navier-Stokes equations by analogy with the known Poiseuille and Couette flows. However, in contrast with the latter, the flows in channels with porous walls (studies in [1], for example) will be nonparallel.The theory of hydrodynamic stability of parallel flows has frequently been applied to nonparallel flows (in the boundary layer, for example). In so doing the nonparallel nature of the flow has been taken into account only by varying the longitudinal velocity component profiles. A study was made in [2, 3] of the effect of the transverse component of the main flow on its stability. In the case of the boundary layer in a compressible gas, a considerable influence of the transverse velocity component on the critical Reynolds number was found in [2] and confirmed experimentally. A strong influence of the transverse velocity component on the instability region was also found in [3] in a study of the flow stability in a boundary layer with suction for an incompressible fluid.  相似文献   

12.
The stability problem of low-speed plane Couette-Poiseuille flow of air under heat transfer effects is solved numerically using the linear stability theory. Stability equations obtained from two-dimensional equations of motion and their boundary conditions result in an eigenvalue problem that is solved using an efficient shoot-search technique. Variable fluid properties are accounted for both in the basic flow and the perturbation (stability) equations. A parametric study is performed in order to assess the roles of moving wall velocity and heat transfer. It is found that the moving wall velocity and the location of the critical layers play decisive roles in the instability mechanism. The flow becomes unconditionally stable whenever the moving wall velocity exceeds half of the maximum velocity in the channel. With wall heating and Mach number effects included, the flow is stabilized.  相似文献   

13.
A model having velocity components as basic unknowns is presented for calculation of two-dimensional flow past a symmetric profile with a wake in a channel. A modified least squares functional is used for the finite element solution of velocities. The determination of the position of the free streamline is treated as an optimum design problem. The concepts of cost function, geometry parameter and sensitivity derivative are employed. Numerical results are compared with published results obtained with streamfunction formulations.  相似文献   

14.
In the region of transition from a two-dimensional laminar boundary layer to a turbulent one, three-dimensional flow occurs [1–3]. It has been proposed that this flow is formed as the result of nonlinear interaction of two-dimensional and three-dimensional disturbances predicted by linear hydrodynamic stability theory. Using many simplifications, [4, 5] performed a calculation of this interaction for a free boundary layer and a boundary layer on a wall with a very coarse approximation of the velocity profile. The results showed some argreement with experiment. On the other hand, it is known that disturbances of the Tollmin—Schlichting wave type can be observed at sufficiently high amplitude. This present study will use the method of successive linearization to calculate the primary two- and three-dimensional disturbances, and also the average secondary flow occurring because of nonlinear interaction of the primary disturbances. The method of calculation used is close to that of [4, 5], the disturbance parameters being calculated on the basis of a Blazius velocity profile. A detailed comparison of results with experimental data [1] is made. It developed that at large disturbance amplitude the amplitude growth rate differs from that of linear theory, while the spatial distribution of disturbances agree s well with the distribution given by the natural functions and their nonlinear interaction. In calculating the secondary flow an experimental correction was made to the amplitude growth rate.  相似文献   

15.
We examine the flow of a plane parallel inviscid stream about an elliptic contour. There is vorticity far ahead of the body because of nonuniformity of the velocity profile. In the case of a small vorticity parameter the velocity profile will be parabolic. In contrast with [1] and [2], we assume the existence of additional circulational flow around the contour. The magnitude of this flow circulation is determined from the condition under which the flow leaves the trailing edge of the body (the analog of the Chaplygin-Zhukovskii postulate in potential flow).The results obtained in this study can be used, in particular, to evaluate the flow past a two-dimensional body in the wake behind another body.The author wishes to thank G. A. Dombrovskii for his interest in this study.  相似文献   

16.
A particular solution of the transonic equations describing two-dimensional flow of an ideal gas is obtained for nonsymmetric flow around a certain profile. The aerodynamic characteristics of the profile are determined.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 5, pp. 76–81, September–October, 1984.The authors are grateful to S. V. Fal'kovich for the useful discussion of the results.  相似文献   

17.
Stability of the Couette flow of a vibrationally excited diatomic gas with a parabolic profile of static temperature is studied within the framework of the linear theory. A set of explicit asymptotic estimates are obtained for inviscid disturbances described by a system of linearized equations of two-temperature gas dynamics. It is shown that the first Rayleigh condition (theorem) is satisfied for unstable modes, and the classification of inviscid modes into even and odd modes is valid. A generalized condition of the presence of an inflection point on the velocity profile, which is necessary for disturbances to evolve, is obtained. The sufficient condition in Howard’s semi-circle theorem is refined. Complex phase velocities of two-dimensional even and odd inviscid modes are numerically calculated as functions of the Mach number, degree of excitation of vibrational levels of energy, and characteristic relaxation time. In the Couette flow problem, in contrast to the case of a free shear layer, the growth rate of the most unstable second mode increases with increasing Mach number and tends to a certain limit for which an asymptotic expression in the form of an ordinary differential equation is obtained. The calculated results show that the effect of reduction of the growth rate on the background of the relaxation process is clearly expressed in the range of flow parameters considered.  相似文献   

18.
The aim of this article is to study the stability of shear flows in bubbly fluids. A mathematical model of bubbly fluids is presented. The stability of shear flows is studied by two methods: by using a spectral approach and by solving the initial-value problem. It is proved that the linear velocity profile is stable in the long wave approximation. Communicated by R. Grimshaw  相似文献   

19.
Flows with a nearly stepped velocity profile are seen on the initial section of jets in experiments. The present article theoretically analyzes the stability and character of branching of secondary regimes in a planar submerged jet with a stepped velocity profile. The piecewise-constant form of the profile makes it possible to perform many of the calculations analytically. A mild excitation regime is discovered and the structure of the secondary regime is calculated.Translated from Zhurnal Prikladnoi Mekhaniki i Tekhnicheskoi Fiziki, No. 6, pp. 43–47, November–December, 1984.The author expresses thanks to V. N. Shtern for his constant attention to the work and useful consultations.  相似文献   

20.
Studies on nonlinear stability of three-dimensional H-type disturbance   总被引:3,自引:0,他引:3  
The three-dimensional H-type nonlinear evolution process for the problem of boundary layer stability is studied by using a newly developed method called parabolic stability equations (PSE). The key initial conditions for sub-harmonic disturbances are obtained by means of the secondaryinstability theory. The initial solutions of two-dimensional harmonic waves are expressed in Landau expansions. The numerical techniques developed in this paper, including the higher order spectrum method and the more effective algebraic mapping for dealing with the problem of an infinite region, increase the numerical accuracy and the rate of convergence greatly. With the predictor-corrector approach in the marching procedure, the normalization, which is very important for PSE method, is satisfied and the stability of the numerical calculation can be assured. The effects of different pressure gradients, including the favorable and adverse pressure gradients of the basic flow, on the “H-type“ evolution are studied in detail. The results of the three-dimensional nonlinear “H-type“ evolution are given accurately and show good agreement with the data of the experiment and the results of the DNS from the curves of the amplitude variation, disturbance velocity profile and the evolution of velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号