首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Up till now the region of three-dimensional separation flows which occur with supersonic flow past obstacles has received insufficient study. Supersonic flow with a Mach number of 2.5 past a cylinder mounted on a plate was studied in [1]. A local zone with supersonic velocities was found in the reverse subsonic flow region ahead of the cylinder. Its presence is explained by the three-dimensional nature of the flow. Similar supersonic zones are not observed in the case of supersonic flow over plane and axisymmetric steps.The present paper presents the results of experimental studies whose objective was refinement of the flow pattern ahead of a cylinder on a plate and the study of the local supersonic zones.The experiments were performed in a supersonic wind tunnel with a freestream Mach number M1=3.11. The 24-mm-diameter cylinder with pressure taps along the generating line was mounted perpendicular to the surface of a sharpened plate. The distance from the plate leading edge to the cylinder axis wasl 0=140 mm. The plate was pressure tapped along the flow symmetry axis. The Reynolds number was Rl 0=u0 l 0/v 1, Rl 0=1.87.107, where u1 andv 1 are the freestream velocity and the kinematic viscosity, respectively. The pressures were measured using a Pilot probe with internal and external diameters of 0.15 and 0.9 mm, respectively.The probe was displaced in the flow symmetry plane at a distance of 1.6 mm from the plate surface and at a distance of 1.1 mm along the leading generator of the cylinder. The flow on the surface of the plate and cylinder was studied with the aid of a visualization composition and the flow past the model was photographed with a schlieren instrument. Typical patterns of the visualization composition distribution and the pressure distribution curves over the plate surface, and also photographs of the flow past the model, are shown in [1].  相似文献   

2.
The properties of the supersonic nonsymmetric separated flow past a spiked body (a sphere or a flat-nosed circular cylinder) with a plane cap on the end of the rotating spike are determined. The effect of nonstationary periodic disturbances in the forward separation zone on the aerodynamic coefficients of the body is analyzed. It is shown that a rotating spike with a plane cap on its end can be used to reduce mechanical and thermal loads on the front surface of a vehicle.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 126–135, September–October, 1996.  相似文献   

3.
In longitudinal supersonic flow over spiked cylinders nonsteady regimes can occur in which a separation zone is periodically generated at the spike, grows vigorously in size, and then vanishes. Several authors [1–6] have investigated the physical pattern of flow with separation zone fluctuations (using shadowgraphs) and have determined the boundaries of existence of the nonsteady regime as a function of the ratio between the spike length and diameter of the cylinder. The authors, however, did not systematically study the dependence of the pulsation frequency on the freestream Mach and Reynolds numbers or on the relative diameter and tip angle of the spike. We have undertaken such an investigation. We are concerned primarily with the influence of the dimensionless parameters on the Strouhal number Sh of the separation zone pulsations at a spike attached to the front of a flat-ended cylinder. Earlier investigations [4–6] have been carried out using motion pictures with film speeds up to 32·103 frames/sec. In the present study we used high-speed motion pictures with a speed of 6.25· 105 frames/sec. This speed allowed us to determine the precise sequence of phases of the pulsations and their relative durations, as well as the speed at which the boundaries of the separation zone move.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 5, pp. 118–124, September–October, 1976.  相似文献   

4.
The effect of low-frequency disturbances of the three-dimensional separation zone formed in supersonic flow over a sphere with a capped spike on the flow in the forward separation zone has been systematically analyzed on the basis of a large series of experiments. The separation zone was disturbed by rotating the spike about its own axis at various angular velocities. The investigation was carried out using motion-picture records of the flow pattern around the model and the pressure and heat flux distributions on the surface of the sphere.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.2, pp. 185–188, March–April, 1992.  相似文献   

5.
A supersonic flow of a binary mixture of gases in a wide range of rarefaction (from a flow with a Knudsen number K n = 0.1 to a free-molecular flow) around a cylinder is studied by means of direct statistical Monte Carlo simulations (DSMC method). The influence of a small fraction of heavy particles in a light gas flow on the region of significant nonequilibrium near the cylinder and on the heat flux is considered.__________Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 46, No. 5, pp. 53–59, September–October, 2005.  相似文献   

6.
The supersonic perfect-gas flow past a circular cylinder is studied on the basis of a numerical analysis of the time-dependent two-dimensional Reynolds equations using a differential q– turbulence model with reference to the experimental conditions. The calculations are carried out at Reynolds and Mach numbers Re=2× 105 and M=1.1, 1.3, and 1.7 and the experimental investigations at Re=1.62×105–2×105 and Mach numbers on the interval 0.7 M 1.7. The calculated and experimental data on the pressure coefficient distribution over the cylinder surface, the location of the separation point on the surface, and the pressure drag coefficient are compared.  相似文献   

7.
The results of an experimental investigation of the boundary pressure fluctuations ahead of an axisymmetric step on an ogival cylinder are presented. The experiments were carried out at supersonic flow velocities on the low Reynolds number range. The results made it possible to detect a new phenomenon, previously unobserved in flows with a free separation line — the generation, development and decay of sharply expressed high-intensity peaks in the pressure fluctuation spectra with variation of the Reynolds numbers corresponding to separtion of the transitional boundary layer.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 170–173, May–June, 1989.  相似文献   

8.
Laser-Doppler measurements of the velocity characteristics are presented for the turbulent flow around a square cross-section cylinder mounted in a water channel for Re=14000. The study involved spectral analysis and digital filtering of the LDV data obtained behind the cylinder. The purpose of the measurements is to separate and quantify the turbulent and the periodic, non-turbulent, motions of the wake flow, in order to improve knowledge of the nature of the fluctuations in the near-wake region of two-dimensional bodies. The results show, for example, that in the zone of highest velocity oscillations the energy associated with the turbulent fluctuations is about 40% of the total energy.A version of the paper was presented at the 10th Symposium on Turbulence, University of Missouri-Rolla, September 22–24, 1986  相似文献   

9.
The complete Navier-Stokes equations are used to calculate supersonic perfect gas flow past a circular isothermal cylinder by the method described in [1]. The effects of the Mach number M=2.5–10 and the Reynolds number Re=30-105 on the flowfield structure and heat transfer to the cylinder wall are investigated. Special attention is paid to the study of the near wake and the local characteristics on the leeward side of the cylinder.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.6, pp. 107–115, November–December, 1993.  相似文献   

10.
The interaction between the wake of a rotor blade and a downstream cylinder holds the key to the understanding and control of electronic cooling fan noise. In this paper, the aerodynamic characteristics of a circular cylinder are experimentally studied in the presence of an upstream NACA 4412 airfoil for the cylinder-diameter-based Reynolds numbers of Red=2,100–20,000, and the airfoil chord-length-based Reynolds numbers of Rec=14,700–140,000. Lift and drag fluctuations on the cylinder, and the longitudinal velocity fluctuations of the flow behind the cylinder were measured simultaneously using a load cell and two hot wires, respectively. Data analysis shows that unsteady forces on the cylinder increase significantly in the presence of the airfoil wake. The dependence of the forces on two parameters is investigated, that is, the lateral distance (T) between the airfoil and the cylinder, and the Reynolds number. The forces decline quickly as T increases. For Rec<60,000, the vortices shed from the upstream airfoil make a major contribution to the unsteady forces on the cylinder compared to the vortex shedding from the cylinder itself. For Rec>60,000, no vortices are generated from the airfoil, and the fluctuating forces on the cylinder are caused by its own vortex shedding.  相似文献   

11.
At around the critical Reynolds number Re = (1.5–4.0)·105 there is an abrupt change in the pattern of transverse subsonic flow past a circular cylinder, and the drag coefficient Cx decreases sharply [1]. A large body of both experimental and computational investigations has now been made into subsonic flow past a cylinder [1–4]. A significant contribution to a deeper understanding of the phenomenon was made by [4], which gives a physical interpretation of a number of theoretical and experimental results obtained in a wide range of Re. Nevertheless, the complicated nonstationary nature of flow past a cylinder with separation and the occurrence of three-dimensional flows when two-dimensional flow is simulated in wind tunnels do not permit one to regard the problem as fully studied. The aim of the present work was to make additional experimental investigations into transverse subsonic flow past a cylinder and, in particular, to study the possible asymmetric stable flow regimes near the critical Reynolds number.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 2, pp. 154–157, March–April, 1980.  相似文献   

12.
The results of an experimental investigation of supersonic flow at the Mach number M1=3 past a transverse gas jet flowing from an orifice in the edge of a dihedral with a linear angle of 90° are presented. The Mach number of the jet was varied from 1 to 3, and the ratio of the total pressure in the jet to the free stream pressure from 90 to 760. Visualization of the flow near the faces of the dihedral revealed the existence of internal lines of flow convergence and divergence in the region of three-dimensional separated flow, which indicates the presence of complex vortex structures. The dependence of the dimensions of the separated flow zone and the characteristic pressures in it on the jet parameters is explored.Moscow. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 6, pp. 161–165, November–December, 1994.  相似文献   

13.
We consider the flow formed by the interaction of a supersonic flow and a transverse sonic or supersonic jet blown at right angles to the direction of the main flow through a nozzle whose exit section is in a flat wall. When a gas jet is blown through a circular opening [1] the pressure rises in front of the jet because of the stagnation of the oncoming flow. This leads to separation of the boundary layer formed on the wall in front of the blowing nozzle. The resulting three-dimensional separation zone leads to a sharp increase in the pressure and the heat fluxes to the wall in front of the blowing nozzle, which is undesirable in many modern applications. The aim of the present investigation was to find a shape of the exit section of the blowing nozzle for which there is no three-dimensional separation zone of the boundary layer in front of the blowing nozzle.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 3, pp. 162–165, May–June, 1979.  相似文献   

14.
The flowfield over a blunt-nosed cylinder was examined experimentally at a low subsonic speed for Re=1.88×105 and angles of attack up to 40°. Velocity measurements were carried out (employing a seven-hole Pitot tube) as well as wall static pressure and wall shear-stress measurements. Surface flow visualization was applied using liquid crystals and a mixture of oil–TiO2. For all the examined cases no flow asymmetries were found. For high angles of attack (20° and above) a separation “bubble” appears at the leeside of the nose area (streamwise flow separation). The basic feature of the circumferential pressure distribution at the after body area for these angles of attack is a plateau close to the suction peak and a fast recovery next to it. One streamwise vortex on each side of the symmetry plane is formed as well as a separation bubble about 90° far from this plane, where the cross-flow primary separation line is located. Each cross-flow primary separation line starts at the leeside nose area and moves towards the windward side along the cylindrical after body. The space between the two primary separation lines close to the wall is characterized by high flow fluctuations on the leeside, compared to the low fluctuations of the windward side.  相似文献   

15.
The results are given of an experimental investigation of the supersonic axisymmetric flow over a body consisting of a spherical segment joined to an inverted cone in the neighborhood of the point of inflection of the profile (Fig. 1a). For the limiting case of a cylinder with a flat end and M = 3, a study was made of the influence of the Reynolds number and the state of the boundary layer on the parameters of the local separation region formed near the inflection (Fig. 1b). It was found that there is an appreciable decrease in the length of the separation region and the pressure in it when the Reynolds number increases in the range Re = 105– 107 in the case of a laminar boundary layer on the flat end near the inflection point. A low level of the pressure on the surface of the body was achieved — of the order of thousandths of the pressure behind a normal shock. There was found to be a sharp increase in the pressure in the separation region when the boundary layer on the end becomes turbulent with transition to a flow regime that is self-similar with respect to the Reynolds number. Under conditions of a turbulent boundary layer, systematic experimental data on the pressure on the inverted cone near the point of inflection of such bodies were obtained and generalized.Translated from Izvestiya Akademii Nauk SSSR, Mekhanika Zhidkosti i Gaza, No. 1, pp. 154–157, January–February, 1981.  相似文献   

16.
The influence of a dilute solution of the cationic surfactant C14Sal on the flow past a cylinder was investigated by means of LDV and Toepler Schlieren optics for visualization of both the flow and structure of the fluid. At low Reynolds numbers the flow is similar to the Newtonian Kármán vortex street. The periodic vortex shedding disappears simultaneously with the occurrence of a shear-induced structure. The alteration of the turbulence characteristics is especially pronounced in the turbulent velocity fluctuations with the u rms being many times over the values in water, whereas the v rms are drastically reduced. Received: 18 May 2000 / Accepted: 25 July 2000  相似文献   

17.
An approach to the numerical study of three-dimensional flow past a high-speed electric train is considered, including the case of turbulent boundary layer separation. The method of viscous-inviscid interaction is used to compute the aerodynamic characteristics. The results of calculating the 3D flow past two configurations of a high-speed electric train, taking into account the close proximity of the ground surface, are presented for a train speedV =300 km/h and the per meter Reynolds number Re=5.6·106 m–1. One of these configurations is shown to have the advantage of separationless flow past a front locomotive and less intense diffuser separations on the afterbody of a rear locomotive. A local separation zone on the sides of the front locomotive's nose was detected in one of the cases considered.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 5, pp. 89–97, September–October, 1993.  相似文献   

18.
The flow past a circular cylinder with an isothermal surface at Mach numbers M=2 and 5 and Reynolds numbers ranging from 104 to 108 is investigated on the basis of the Reynolds equations using a differential two-equation turbulence model. The effect of flow turbulization on the separation point displacement, the separation zone length, the maximum velocity reduction in the separation zone, and the increase in the heat flux at the rear stagnation point is determined.  相似文献   

19.
Steady incident flow past a circular cylinder for sub- to supercritical Reynolds number has been simulated as an unsteady Reynolds-averaged Navier–Stokes (RANS) equation problem using nonlinear eddy-viscosity modelling assuming two-dimensional flow. The model of Craft et al. (Int. J. Heat Fluid Flow 17 (1996) 108), with adjustment of the coefficients of the ‘cubic’ terms, predicts the drag crisis at a Reynolds number of about 2×105 due to the onset of turbulence upstream of separation and associated changes in Strouhal number and separation positions. Slightly above this value, at critical Reynolds numbers, drag is overestimated because attached separation bubbles are not simulated. These do not occur at supercritical Reynolds numbers and drag coefficient, Strouhal number and separation positions are in approximate agreement with experimental measurements (which show considerable scatter). Fluctuating lift predictions are similar to sectional values measured experimentally for subcritical Reynolds numbers but corresponding measurements have not been made at supercritical Reynolds numbers. For oscillatory ambient flow, in-line forces, as defined by drag and inertia coefficients, have been compared with the experimental values of Sarpkaya (J. Fluid Mech. 165 (1986) 61) for values of the frequency parameter, β=D2T, equal to 1035 and 11240 and Keulegan–Carpenter numbers, KC=U0T/D, between 0.2 and 15 (D is cylinder diameter, ν is kinematic viscosity, T is oscillation period, and U0 is the amplitude of oscillating velocity). Variations with KC are qualitatively reproduced and magnitudes show best agreement when there is separation with a large-scale wake, for which the turbulence model is intended. Lift coefficients, frequency and transverse vortex shedding patterns for β=1035 are consistent with available experimental information for β≈250−500. For β=11240, it is predicted that separation is delayed due to more prominent turbulence effects, reducing drag and lift coefficients and causing the wake to be more in line with the flow direction than transverse to it. While these oscillatory flows are highly complex, attached separation bubbles are unlikely and the flows probably two dimensional.  相似文献   

20.
Low Reynolds number flow of Newtonian and viscoelastic Boger fluids past periodic square arrays of cylinders with a porosity of 0.45 and 0.86 has been studied. Pressure drop measurements along the flow direction as a function of flow rate as well as flow visualization has been performed to investigate the effect of fluid elasticity on stability of this class of flows. It has been shown that below a critical Weissenberg number (Wec), the flow in both porosity cells is a two-dimensional steady flow, however, pressure fluctuations appear above Wec which is 2.95±0.25 for the 0.45 porosity cell and 0.95±0.08 for the higher porosity cell. Specifically, in the low porosity cell as the Weissenberg number is increased above Wec a transition between a steady two-dimensional to a transient three-dimensional flow occurs. However, in the high porosity cell a transition between a steady two-dimensional to a steady three-dimensional flow consisting of periodic cellular structures along the length of the cylinder in the space between the first and the second cylinder occurs while past the second cylinder another transition to a transient three-dimensional flow occurs giving rise to time- dependent cellular structures of various wavelengths along the length of the cylinder. Overall, the experiments indicate that viscoelastic flow past periodic arrays of cylinders of various porosities is susceptible to purely elastic instabilities. Moreover, the instability observed in lower porosity cells where a vortex is present between the cylinders in the base flow is amplifieds spatially, that is energy from the mean flow is continuously transferred to the disturbance flow along the flow direction. This instability gives rise to a rapid increase in flow resistance. In higher porosity cells where a vortex between the cylinders is not present in the base flow, the energy associated with the disturbance flow is not greatly changed along the flow direction past the second cylinder. In addition, it has been shown that in both flow cells the instability is a sensitive function of the relaxation time of the fluid. Hence, the instability in this class of flows is a strong function of the base flow kinematics (i.e., curvature of streamlines near solid surfaces), We and the relaxation time of the fluid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号