首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The reactions of [AuClL] with Ag(2)O, where L represents the heterofunctional ligands PPh(2)py and PPh(2)CH(2)CH(2)py, give the trigoldoxonium complexes [O(AuL)(3)]BF(4). Treatment of these compounds with thio- or selenourea affords the triply bridging sulfide or selenide derivatives [E(AuL)(3)]BF(4) (E=S, Se). These trinuclear species react with Ag(OTf) or [Cu(NCMe)(4)]PF(6) to give different results, depending on the phosphine and the metal. The reactions of [E(AuPPh(2)py)(3)]BF(4) with silver or copper salts give [E(AuPPh(2)py)(3)M](2+) (E=O, S, Se; M=Ag, Cu) clusters that are highly luminescent. The silver complexes consist of tetrahedral Au(3)Ag clusters further bonded to another unit through aurophilic interactions, whereas in the copper species two coordination isomers with different metallophilic interactions were found. The first is analogous to the silver complexes and in the second, two [S(AuPPh(2)py)(3)](+) units bridge two copper atoms through one pyridine group in each unit. The reactions of [E(AuPPh(2)CH(2)CH(2)py)(3)]BF(4) with silver and copper salts give complexes with [E(AuPPh(2)CH(2)CH(2)py)(3)M](2+) stoichiometry (E=O, S, Se; M=Ag, Cu) with the metal bonded to the three nitrogen atoms in the absence of AuM interactions. The luminescence of these clusters has been studied by varying the chalcogenide, the heterofunctional ligand, and the metal.  相似文献   

2.
By using the neutral bidentate nitrogen-containing ligand, bis(3,5-diisopropyl-1-pyrazolyl)methane (L1' '), the copper(I) complexes [Cu(L1' ')2](CuCl2) (1CuCl2), [Cu(L1' ')2](ClO4) (1ClO4), [Cu(L1' ')]2(ClO4)2 (2ClO4), [Cu(L1' ')]2(BF4)2 (2BF4), [Cu(L1' ')(NCMe)](PF6) (3PF6), [Cu(L1' ')(PPh3)](ClO4) (4ClO4), [Cu(L1' ')(PPh3)](PF6) (4PF6), [{Cu(L1' ')(CO)}2(mu-ClO4)](ClO4) (5ClO4), and the copper(II) complexes [{Cu(L1' ')}2(mu-OH)2(mu-ClO4)2] (6), and [Cu(L1' ')Cl2] (7) were systematically synthesized and fully characterized by X-ray crystallography and by IR and 1H NMR spectroscopy. In the case of copper(II), ESR spectroscopy was also applied. In comparison with the related neutral tridentate ligand L1', bis-chelated copper(I) complexes and binuclear linear-coordinated copper(I) complexes are easy to obtain with L1' ', like 1CuCl2, 1ClO4, 2ClO4, and 2BF4. Importantly, stronger and bulkier ligands such as acetonitrile (3PF6) and especially triphenylphosphine (4ClO4 and 4PF6) generate three-coordinate structures with a trigonal-planar geometry. Surprisingly, for the smaller ligand carbon monoxide, a mononuclear three-coordinate structure is very unstable, leading to the formation of a binuclear complex (5ClO4) with one bridging perchlorate anion, such that the copper(I) centers are four-coordinate. The same tendency is observed for the copper(II) bis(mu-hydroxo) compounds 6, which is additionally bridged by two perchlorate anions. Both copper(II) complexes 6 and 7 were obtained by molecular O2 oxidation of the corresponding copper(I) complexes. A comparison of the new copper(I) triphenylphosphine complexes 4ClO4 and 4PF6 with corresponding species obtained with the related tridentate ligands L1' and L1 (8ClO4 and 9, respectively) reveals surprisingly small differences in their spectroscopic properties. Density functional theory (DFT) calculations are used to shed light on the differences in bonding in these compounds and the spectral assignments. Finally, the reactivity of the different bis(pyrazolyl)methane complexes obtained here toward PPh3, CO, and O2 is discussed.  相似文献   

3.
Tris(pyrazolyl)borate aryldiazenido complexes [RuTpLL'(ArN(2))](BF(4))(2) (1-3) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); Tp = hydridotris(pyrazolyl)borate; L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were prepared by allowing dihydrogen [RuTp(eta(2)-H(2))LL'](+) derivatives to react with aryldiazonium cations. Spectroscopic characterization (IR, (15)N NMR) using the (15)N-labeled derivatives strongly supports the presence of a linear [Ru]-NN-Ar aryldiazenido group. Hydrazine complexes [RuTp(RNHNH(2))LL']BPh(4) (4-6) [R = H, CH(3), C(6)H(5), 4-NO(2)C(6)H(4); L = P(OEt)(3) or PPh(OEt)(2), L' = PPh(3); L = L' = P(OEt)(3)] were also prepared by reacting the [RuTp(eta(2)-H(2))LL'](+) cation with an excess of hydrazine. The complexes were characterized spectroscopically (IR and NMR) and by X-ray crystal structure determination of the [RuTp(CH(3)NHNH(2))[P(OEt)(3)](PPh(3))]BPh(4) (4d) derivative. Tris(pyrazolyl)borate aryldiazene complexes [RuTp(ArN=NH)LL']BPh(4) (7-9) (Ar = C(6)H(5), 4-CH(3)C(6)H(4)) were prepared following three different methods: (i). by allowing hydride species RuHTpLL' to react with aryldiazonium cations in CH(2)Cl(2); (ii). by treating aryldiazenido [RuTpLL'(ArN(2))](BF(4))(2) with LiBHEt(3) in CH(2)Cl(2); (iii). by oxidizing arylhydrazine [RuTp(ArNHNH(2))LL']BPh(4) complexes with Pb(OAc)(4) in CH(2)Cl(2) at -30 degrees C. Methyldiazene complexes [RuTp(CH(3)N=NH)LL']BPh(4) were also prepared by the oxidation of the corresponding methylhydrazine [RuTp(CH(3)NHNH(2))LL']BPh(4) with Pb(OAc)(4).  相似文献   

4.
A nitrosylruthenium alkynyl complex of TpRuCl(C[triple bond]CPh)(NO)(1a) was reacted with PPh3 in the presence of HBF4.Et2O at room temperature to give a beta-phosphonio-alkenyl complex (E)-[TpRuCl{CH=C(PPh3)Ph}(NO)]BF4(2.BF4). On the other hand, for gamma-hydroxyalkynyl complexes TpRuCl{C[triple bond]CC(R)2OH}(NO)(R = Me (1b), Ph (1c), H (1d)), similar treatments with PPh3 were found to give gamma-phosphonio-alkynyl [TpRuCl{C[triple bond]CC(Me)2PPh3}(NO)]BF4(3.BF4),alpha-phosphonio-allenyl [TpRuCl{C(PPh3)=C=CPh2}(NO)]BF4(4.BF4), and a novel product of gamma-hydroxy-beta-phosphonio-alkenyl (E)-[TpRuCl{CH=C(PPh3)CH2OH}(NO)]BF4(5.BF4), respectively. Dominant factors for the selectivity in affording 3-5 were associated with the steric congestion and electronic properties at the gamma-carbons, along with those around the metal fragment. From the bis(alkynyl) complex TpRu(C[triple bond]CPh)2(NO)6, a bis(beta-phosphonio-alkenyl)(E,E)-[TpRu{CH=C(PPh3)Ph}2(NO)](BF4)2{7.(BF4)2} was produced at room temperature. However, similar reactions at 0 degrees C gave an alkynyl beta-phosphonio-alkenyl complex (E)-[TpRu(C[triple bondCPh){CH=C(PPh3)Ph}(NO)]BF4(8.BF4) as a sole product, of which additional hydration in the presence of HBF4.Et2O afforded a [small beta]-phosphonio-alkenyl ketonyl (E)-[TpRu{CH2C(O)Ph}{CH=C(PPh3)Ph}(NO)]BF(.9BF4). Five complexes, 2-5 and 7 were crystallographically characterized.  相似文献   

5.
The dialkylcyanamide complexes cis-[PtCl(NCNR(2))(PPh(3))(2)][BF(4)] 1 and cis-[Pt(NCNR(2))(2)(PPh(3))(2)][BF(4)](2) 2 (R = Me or Et) have been prepared by treatment of a CH(2)Cl(2) solution of cis-[PtCl(2)(PPh(3))(2)] with the appropriate dialkylcyanamide and one or two equivalents of Ag[BF(4)], respectively. Compounds 2 can also be obtained from 1 by a similar procedure. Their reaction with oximes, HON=CR'R' ' (R'R' ' = Me(2) or C(4)H(8)), in CH(2)Cl(2) and in the presence of Ag[BF(4)] or Cu(CH(3)COO)(2), leads to the novel type of azametallacycles cis-[Pt(NH=C(ON=CR'R")-NR2)(PPh3)2][BF4]2 4 upon an unprecedented coupling of the organocyanamides with oximes, in a process that proceeds via the mixed oxime-organocyanamide species cis-[Pt(NCNR(2))(HON=CR'R' ')(PPh(3))(2)][BF(4)](2) 3, and is catalyzed by either Ag(+) or Cu(2+) which activate the ligating organocyanamide by Lewis acid addition to the amide group. In contrast, in the organonitrile complexes cis-[Pt(NCR)(2)(PPh(3))(2)][BF(4)](2) 5 (R = C(6)H(4)OMe-4 or Et), obtained in a similar way as 2 (but by using NCR instead of the cyanamide), the ligating NCR is not activated by the Lewis acid and does not couple with the oximes. The spectroscopic properties of those complexes are reported along with the molecular structures of 2b (R = Et), 4a1 (R = Me, R'R' ' = Me(2)), and 4b1 (R = Et, R'R' ' = Me(2)), as established by X-ray crystallography which indicates that in the former complex the amide-N-atoms are trigonal planar, whereas in the latter (4a1 and 4b1) the five-membered rings are planar with a localized N=C double bond (imine group derived from the cyanamide) and the exocyclic amide and alkylidene groups (in 4b1) are involved in two intramolecular H-bonds to the oxygen atom of the ring.  相似文献   

6.
Deprotonation of the phosphine complexes Au(PHR(2))Cl with aqueous ammonia gave the gold(I) phosphido complexes [Au(PR(2))](n)() (PR(2) = PMes(2) (1), PCy(2) (2), P(t-Bu)(2) (3), PIs(2) (4), PPhMes (5), PHMes (6); Mes = 2,4,6-Me(3)C(6)H(2), Is = 2,4,6-(i-Pr)(3)C(6)H(2), Mes = 2,4,6-(t-Bu)(3)C(6)H(2), Cy = cyclo-C(6)H(11)). (31)P NMR spectroscopy showed that these complexes exist in solution as mixtures, presumably oligomeric rings of different sizes. X-ray crystallographic structure determinations on single oligomers of 1-4 revealed rings of varying size (n = 4, 6, 6, and 3, respectively) and conformation. Reactions of 1-3 and 5 with PPN[AuCl(2)] gave PPN[(AuCl)(2)(micro-PR(2))] (9-12, PPN = (PPh(3))(2)N(+)). Treatment of 3 with the reagents HI, I(2), ArSH, LiP(t-Bu)(2), and [PH(2)(t-Bu)(2)]BF(4) gave respectively Au(PH(t-Bu)(2))(I) (14), Au(PI(t-Bu)(2))(I) (15), Au(PH(t-Bu)(2))(SAr) (16, Ar = p-t-BuC(6)H(4)), Li[Au(P(t-Bu)(2))(2)] (17), and [Au(PH(t-Bu)(2))(2)]BF(4) (19).  相似文献   

7.
Neutral and cationic mononuclear complexes containing both group 15 and polypyridyl ligands [Ru(kappa3-tptz)(PPh3)Cl2] [1; tptz=2,4,6-tris(2-pyridyl)-1,3,5-triazine], [Ru(kappa3-tptz)(kappa2-dppm)Cl]BF4 [2; dppm=bis(diphenylphosphino)methane], [Ru(kappa3-tptz)(PPh3)(pa)]Cl (3; pa=phenylalanine), [Ru(kappa3-tptz)(PPh3)(dtc)]Cl (4; dtc=diethyldithiocarbamate), [Ru(kappa3-tptz)(PPh3)(SCN)2] (5) and [Ru(kappa3-tptz)(PPh3)(N3)2] (6) have been synthesized. Complex 1 has been used as a metalloligand in the synthesis of homo- and heterodinuclear complexes [Cl2(PPh3)Ru(micro-tptz)Ru(eta6-C6H6)Cl]BF4 (7), [Cl2(PPh3)Ru(mu-tptz)Ru(eta6-C10H14)Cl]PF6 (8), and [Cl2(PPh3)Ru(micro-tptz)Rh(eta5-C5Me5)Cl]BF4 (9). Complexes 7-9 present examples of homo- and heterodinuclear complexes in which a typical organometallic moiety [(eta6-C6H6)RuCl]+, [(eta6-C10H14)RuCl]+, or [(eta5-C5Me5)RhCl]+ is bonded to a ruthenium(II) polypyridine moiety. The complexes have been fully characterized by elemental analyses, fast-atom-bombardment mass spectroscopy, NMR (1H and 31P), and electronic spectral studies. Molecular structures of 1-3, 8, and 9 have been determined by single-crystal X-ray diffraction analyses. Complex 1 functions as a good precursor in the synthesis of other ruthenium(II) complexes and as a metalloligand. All of the complexes under study exhibit inhibitory effects on the Topoisomerase II-DNA activity of filarial parasite Setaria cervi and beta-hematin/hemozoin formation in the presence of Plasmodium yoelii lysate.  相似文献   

8.
Complexes of the type [(diphosphine)Cr(CO)(4)] (diphosphine = Ph(2)PN(iPr)PPh(2), Ar(2)PN(Me)PAr(2) or Ar(2)PCH(2)PAr(2) (Ar = 2-C(6)H(4)(MeO)) have been synthesised. In the solid state, these complexes show tight phosphine bite angles in the range 67.82(4) degrees to 71.52(5) degrees and the nitrogen atom in N,N-bis(diarylphophino)amine ligands adopts an almost planar (sp(2)) geometry. All of the complexes are readily oxidised electrochemically or chemically to corresponding Cr(i) species. There is no evidence for coordination of the pendant ether group in derivatives with Ar = 2-MeO-C(6)H(4) in either Cr(0) or Cr(i) species. Treatment of the [(diphosphine)Cr(CO)(4)] complexes with [NO]BF(4) yields [(diphosphine)Cr(NO)(CO)(3)]BF(4). Removal of CO ligands to generate an oligomerisation-active species is not observed with amine oxides but triethyl aluminium is effective in this role, and active catalysts can be produced. The use of weakly coordinating anions seems crucial in achieving oligomerisation catalysis.  相似文献   

9.
Four mononuclear Cu(I) complexes of 2-(2'-pyridyl)benzimidazolylbenzene (pbb) with four different ancillary phosphine ligands PPh(3), bis[2-(diphenylphosphino)phenyl]ether (DPEphos), bis(diphenylphosphino)ethane (dppe), and bis(diphenylphosphinomethyl)diphenylborate (DPPMB) have been synthesized. The crystal structures of [Cu(pbb)(PPh(3))(2)][BF(4)] (1), [Cu(pbb)(dppe)][BF(4)] (2), [Cu(pbb)(DPEphos)][BF(4)] (3), and the neutral complex [Cu(pbb)(DPPMB)] (4) were determined by single-crystal X-ray diffraction analyses. The impact of the phosphine ligands on the structures of the copper(I) complexes was examined, revealing that the most significant impact of the phosphine ligands is on the P-Cu-P bond angle. The electronic and photophysical properties of the new complexes were examined by using UV-vis, fluorescence, and phosphorescence spectroscopies and electrochemical analysis. All four complexes display a weak MLCT absorption band that varies considerably with the phosphine ligand. At ambient temperature, no emission was observed for any of the complexes in solution. However, when doped into PMMA polymer (20 wt %), at ambient temperature, all four complexes emit light with a color ranging from green to red-orange, depending on the phosphine ligand. The emission of the new copper complexes has an exceptionally long decay lifetime (>200 micros). Ab initio MO calculations established that the lowest electronic transition in the copper(I) complexes is MLCT in nature. The electronic and photophysical properties of the new mononuclear Cu(I) complexes were compared with those of the corresponding polynuclear Cu(I) complexes based on the 2-(2'-dipyridyl)benzimidazolyl derivative ligands and the previously extensively studied phenanthroline-based Cu(I) complexes.  相似文献   

10.
A series of ruthenium(II) acetonitrile, pyridine (py), carbonyl, SO2, and nitrosyl complexes [Ru(bdmpza)(O2CR)(L)(PPh3)] (L = NCMe, py, CO, SO2) and [Ru(bdmpza)(O2CR)(L)(PPh3)]BF4 (L = NO) containing the bis(3,5-dimethylpyrazol-1-yl)acetato (bdmpza) ligand, a N,N,O heteroscorpionate ligand, have been prepared. Starting from ruthenium chlorido, carboxylato, or 2-oxocarboxylato complexes, a variety of acetonitrile complexes [Ru(bdmpza)Cl(NCMe)(PPh3)] (4) and [Ru(bdmpza)(O2CR)(NCMe)(PPh3)] (R = Me (5a), R = Ph (5b)), as well as the pyridine complexes [Ru(bdmpza)Cl(PPh3)(py)] (6) and [Ru(bdmpza)(O2CR)(PPh3)(py)] (R = Me (7a), R = Ph (7b), R = (CO)Me (8a), R = (CO)Et (8b), R = (CO)Ph) (8c)), have been synthesized. Treatment of various carboxylato complexes [Ru(bdmpza)(O2CR)(PPh3)2] (R = Me (2a), Ph (2b)) with CO afforded carbonyl complexes [Ru(bdmpza)(O2CR)(CO)(PPh3)] (9a, 9b). In the same way, the corresponding sulfur dioxide complexes [Ru(bdmpza)(O2CMe)(PPh3)(SO2)] (10a) and [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) were formed in a reaction of the carboxylato complexes with gaseous SO2. None of the 2-oxocarboxylato complexes [Ru(bdmpza)(O2C(CO)R)(PPh3)2] (R = Me (3a), Et (3b), Ph (3c)) showed any reactivity toward CO or SO2, whereas the nitrosyl complex cations [Ru(bdmpza)(O2CMe)(NO)(PPh3)](+) (11) and [Ru(bdmpza)(O2C(CO)Ph)(NO)(PPh3)](+) (12) were formed in a reaction of the acetato 2a or the benzoylformato complex 3c with an excess of nitric oxide. Similar cationic carboxylato nitrosyl complexes [Ru(bdmpza)(O2CR)(NO)(PPh3)]BF4 (R = Me (13a), R = Ph (13b)) and 2-oxocarboxylato nitrosyl complexes [Ru(bdmpza)(O2C(CO)R)(NO)(PPh3)]BF4 (R = Me (14a), R = Et (14b), R = Ph (14c)) are also accessible via a reaction with NO[BF4]. X-ray crystal structures of the chlorido acetonitrile complex [Ru(bdmpza)Cl(NCMe)(PPh3)] (4), the pyridine complexes [Ru(bdmpza)(O2CMe)(PPh3)(py)] (7a) and [Ru(bdmpza)(O2CC(O)Et)(PPh3)(py)] (8b), the carbonyl complex [Ru(bdmpza)(O2CPh)(CO)(PPh3)] (9b), the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b), as well as the nitrosyl complex [Ru(bdmpza)(O2C(CO)Me)(NO)(PPh3)]BF4 (14a), are reported. The molecular structure of the sulfur dioxide complex [Ru(bdmpza)(O2CPh)(PPh3)(SO2)] (10b) revealed a rather unusual intramolecular SO2-O2CPh Lewis acid-base adduct.  相似文献   

11.
The aryl-functionalized pyridylamine 2-(i)PrC(6)H(4)N(H)py (1) and bis(2-pyridyl)amines of the type ArN(py)(2) for Ar = Mes (2), 2,6-Et(2)C(6)H(3) (3), 2-(i)PrC(6)H(4) (4), 2,6-(i)Pr(2)C(6)H(3) (5), and 1-naph (6), have been prepared by the palladium-catalyzed cross-coupling of substituted anilines with 2-bromopyridine, and have been characterized by (1)H and (13)C NMR NMR, FTIR, MS, and TGA. Complexes of these new N-aryl bis(2-pyridyl)amines have been prepared for the acid salts [H{ArN(py)(2)}]BF(4) where Ar = Mes (7) and 2-(i)PrC(6)H(4) (8), and the dimeric bridged complexes [Cu{ArN(py)(2)}(μ-X)(Y)](2) where X/Y = Cl(-) and Ar = Ph (9), 2-(i)PrC(6)H(4) (10), and 1-naph (11), in addition to X = OH(-), Y = H(2)O and Ar = Mes (12). The olefin complexes [Cu(Ar-dpa)(styrene)]BF(4) for Ar = Ph (13), Mes (14), 2-(i)PrC(6)H(4) (15), and 1-naph (16), in addition to the norborylene complexes of Ar = Mes (17) and 2-(i)PrC(6)H(4) (18) have been prepared and characterized by (1)H and (13)C NMR, FTIR, and TGA. The crystal structures have been determined for compounds 1-17. Secondary amine 1 crystallizes in hydrogen-bonded head-to-tail dimers, while the N-aryl bis(2-pyridyl)amines 2-6 crystallize in a three-bladed propellar conformation, having nearly planar geometries about the amine nitrogen. The geometry about copper centers in the dimeric complexes 9-12 is distorted trigonal bypyramidal, with the axial positions occupied by one of the two pyridyl nitrogens and one of the bridging ligands (i.e., Cl or OH). The copper atoms in each of the olefin complexes 13-17 are coordinated to the two pyridine nitrogen atoms and the appropriate olefin; consistent with a pseudo three-coordinate Cu(I) cation. Distortion of pyridyl ring geometries about the copper centers, and concomitant bending of the aryl groups away from the CuN(amine) vectors were found to correlate with the steric bulk of the aryl group present in both dimeric and olefin complexes. Such distortion is also observed to a lesser extent in the acid salts as well. The (1)H and (13)C NMR spectra of [Cu(Ar-dpa)(olefin)]BF(4) exhibit an upfield shift in the olefin signal as compared to free olefin. A good correlation exists between the (1)H and (13)C NMR Δδ values and olefin dissociation temperatures, confirming that the shift of the olefin NMR resonances upon coordination is associated with the binding strength of the complex.  相似文献   

12.
Condensation of Ph(2)PH and paraformaldehyde with 2-amino-7-methyl-1,8-naphthyridine gave the new flexible tridentate ligand 2-[N-(diphenylphosphino)methyl]amino-7-methyl-1,8-naphthyridine (L). Reaction of L with [Cu(CH(3)CN)(4)]BF(4) and/or different ancillary ligands in dichloromethane afforded N,P chelating or bridging luminescent complexes [(L)(2)Cu(2)](BF(4))(2), [(micro-L)(2)Cu(2)(PPh(3))(2)](BF(4))(2) and [(L)Cu(CNN)]BF(4) (CNN = 6-phenyl-2,2'-bipyridine), respectively. Complexes [(L)(2)Pt]Cl(2), [(L)(2)Pt](ClO(4))(2) and [(L)Pt(CNC)]Cl (CNC = 2,6-biphenylpyridine) were obtained from the reactions of Pt(SMe(2))(2)Cl(2) or (CNC)Pt(DMSO)Cl with L. The crystal structures and photophysical properties of the complexes are presented.  相似文献   

13.
Ketimino(phosphino)gold(I) complexes of the type [Au[NR=C(Me)R']L]X (X = ClO4, R = H, L = PPh3, R'=Me (la), Et (2a); L=PAr3 (Ar=C6H4OMe-4), R'=Me (1b), Et (2b); L=PPh3, R=R'=Me (3); X= CF3SO3 (OTf), L=PPh3, R=R'=Me (3'); R=Ar, R'=Me (4)) have been prepared from [Au(acac)L] (acac = acetyl acetonate) and ammonium salts [RNH3]X dissolved in the appropriate ketone MeC(O)R'. Complexes [Au(NH=CMe2)2]X (X = C1O4 (6), OTf (6')) were obtained from solutions of [Au(NH3)2]X in acetone. The reaction of 6 with PPN[AuCl2] or with PhICl2 gave [AuCl(NH=CMe2)] (7) or [AuCI2(NH=CMe2)2]ClO4 (8), respectively. Complex 7 was oxidized with PhICl2 to give [AuCl3(NH=CMe2)] (9). The reaction of [AuCl(tht)] (tht = tetrahydrothiophene), NaClO4, and ammonia in acetone gave [Au(acetonine)2]ClO4 (10) (acetonine = 2,2,4,4,6-pentamethyl-2,3,4,5-tetrahydropyrimidine) which reacted with PPh3 or with PPN[AuCl2] to give [Au(PPh3)(acetonine)]ClO4 (11) or [AuCl(acetonine)] (12), respectively. Complex 11 reacts with [Au(PPh3)(Me2CO)]ClO4 to give [(AuPPh3)2(mu-acetonine)](ClO4)2 (13). The reaction of AgClO4 with acetonine gave [Ag(acetonine)(OClO3)] (14). The crystal structures of [Au(NH2Ar)(PPh3)]OTf (5), 6' and 10 have been determined.  相似文献   

14.
Deprotonation of the N-thiophosphorylated thioureas RC(S)NHP(S)(OiPr)(2) (R = Me(2)N, HL(I); iPrNH, HL(II); 2,6-Me(2)C(6)H(3)NH, HL(III), 2,4,6-Me(3)C(6)H(2)NH, HL(IV), aza-15-crown-5, HL(V)) and reaction with CuI or Cu(NO(3))(2) in aqueous EtOH leads to the polynuclear complexes [Cu(4)(L(I)-S,S')(4)], [Cu(8)(L(II)-S,S')(8)], and [Cu(3)(L(III-V)-S,S')(3)]. The structures of these compounds were investigated by IR, (1)H, (31)P{(1)H} NMR, UV-vis spectroscopy and elemental analyses. The crystal structures of [Cu(4)L(I)(4)], [Cu(8)L(II)(8)], [Cu(3)L(III,IV)(3)] were determined by single-crystal X-ray diffraction. Reaction of the deprotonated ligands (L(I-V))(-) with a mixture of CuI and 1,10-phenanthroline (phen) or PPh(3) leads to the mixed-ligand mononuclear complexes [Cu(phen)L(I-V)], [Cu(PPh(3))L(I-V)] or [Cu(PPh(3))(2)L(I-V)]. The same mixed-ligand complexes were obtained from the reaction of [Cu(4)L(I)(4)], [Cu(8)L(II)(8)], [Cu(3)L(III-V)(3)] with phen or PPh(3).  相似文献   

15.
Chou CC  Su CC  Yeh A 《Inorganic chemistry》2005,44(17):6122-6128
The synthesis and structures of a mononuclear copper(I) carbonyl complex [Cu(OClO3)(CO)(H2CPz2')] (3) and a dinuclear copper(I) carbonyl complex [{Cu(CO)(H2CPz2')}2(mu-pyrazine)](ClO4)2 (4), where H2CPz2' = bis(3,5-dimethylpyrazol-1-yl)methane, are described. These two compounds were generated by the carbonylation of the corresponding copper(I)-acetonitrile complexes, [Cu(H2CPz2')(MeCN)](ClO4) (1) and [{Cu(H2CPz2')(MeCN)}2(mu-pyrazine)](ClO4)2 (2). Alternatively, treatment of mononuclear 1 and 3, respectively, with pyrazine in a molar ratio of 2:1 produces the pyrazine-bridged dinuclear Cu(I) complexes 2 and 4. Each of the complexes 1-4 can react with PPh3 to generate a common three-coordinated copper(I) complex [Cu(PPh3)(H2CPz2')](ClO4) (5). The structures of complexes 1-5 were all confirmed by X-ray crystallography. Comparison of the Cu(I)-C(CO) bond distances and the CO stretching frequencies of 3 and 4 indicates the back-donating properties of d pi(Cu)-pi*(pyrazine) bonds in 4, and accordingly, stabilizes the mixed-valence species generated from 2. Complex 3, stabilized by the strong interaction between copper(I) ion and perchlorate counteranion (Cu(I)-O(ClO4) = 2.240(3) A), is a potential precursor for polynuclear copper(I) carbonyl complexes.  相似文献   

16.
Reaction of the potassium salts of N-thiophosphorylated thioureas of common formula RC(S)NHP(S)(OiPr)(2) [R = morpholin-N-yl (HL(a)), piperidin-N-yl (HL(b)), NH(2) (HL(c)), PhCH(2)NH (HL(d))] with Cu(PPh(3))(3)I in aqueous EtOH/CH(2)Cl(2) leads to mononuclear [Cu(PPh(3))(2)L-S,S'] complexes. Using copper(i) iodide instead of Cu(PPh(3))(3)I, polynuclear complexes [Cu(n)(L-S,S')(n)] were obtained. The structures of these compounds were investigated by ES-MS, elemental analyses, 1H and 31P NMR in solution, IR and 31P solid-state MAS NMR spectroscopy. The crystal structures of [Cu(3)L(3)(a)] and [Cu(PPh(3))(2)L(b)] were determined by single-crystal X-ray diffraction.  相似文献   

17.
Reactions of the iridium(III) nitrosyl complex [Ir(NO)Cl2(PPh3)2] (1) with hydrosulfide and arenethiolate anions afforded the square-pyramidal iridium(III) complex [Ir(NO)(SH)2(PPh3)2] (2) with a bent nitrosyl ligand and a series of the square-planar iridium(I) complexes [Ir(NO)(SAr)2(PPh3)] (3a, Ar = C6H2Me3-2,4,6 (Mes); 3b, Ar = C6H3Me2-2,6 (Xy); 3c, Ar = C6H2Pri3-2,4,6) containing a linear nitrosyl ligand, respectively. Complex 1 also reacted with alkanethiolate anions or alkanethiols to give the thiolato-bridged diiridium complexes [Ir(NO)(mu-SPri)(SPri)(PPh3)]2 (4) and [Ir(NO)(mu-SBut)(PPh3)]2 (5). Complex 4 contains two square-pyramidal iridium(III) centers with a bent nitrosyl ligand, whereas 5 contains two tetrahedral iridium(0) centers with a linear nitrosyl ligand and has an Ir-Ir bond. Upon treatment with benzoyl chloride, 3a and 3b were converted into the (diaryl disulfide)- and thiolato-bridged dichlorodiiridium(III) complexes [[IrCl(mu-SC6HnMe4-nCH2)(PPh3)]2(mu-ArSSAr)] (6a, Ar = Mes, n = 2; 6b, Ar = Xy, n = 3) accompanied by a loss of the nitrosyl ligands and cleavage of a C-H bond in an ortho methyl group of the thiolato ligands. Similar treatment of 4 gave the dichlorodiiridium complex [Ir(NO)(PPh3)(mu-SPri)3IrCl2(PPh3)] (7), which has an octahedral dichloroiridium(III) center and a distorted trigonal-bipyramidal Ir(I) atom with a linear nitrosyl ligand. The detailed structures of 3a, 4, 5, 6a, and 7 have been determined by X-ray crystallography.  相似文献   

18.
The reactions of the dinuclear copper complexes [Cu(2)(L)(OAc)] [H(3)L = N,N'-(2-hydroxypropane-1,3-diyl)bis(salicylaldimine) or [Cu(2)(L')(OAc)] (H(3)L' = N,N'-(2-hydroxypropane-1,3-diyl)bis(4,5-dimethylsalicylaldimine)] with various phosphonic acids, RPO(3)H(2) (R = t-Bu, Ph, c-C(5)H(9), c-C(6)H(11) or 2,4,6-i-Pr(3)-C(6)H(2)), leads to the replacement of the acetate bridge affording tetranuclear copper(II) phosphonates, [Cu(4)(L)(2)(t-BuPO(3))](CH(3)OH)(2)(C(6)H(6)) (1), [Cu(4)(L)(2)(PhPO(3))(H(2)O)(2)(NMe(2)CHO)](H(2)O)(2) (2), [Cu(4)(L')(2)(C(5)H(9)PO(3))](CH(3)OH)(2) (3), [Cu(4)(L')(2)(C(6)H(11)PO(3)](MeOH)(4)(H(2)O)(2) (4) and [Cu(4)(L')(2)(C(30)H(46)P(2)O(5))](PhCH(3)) (5). The molecular structures of 1-4 reveal that a [RPO(3)](2-) ligand is involved in holding the four copper atoms together by a 4.211 coordination mode. In 5, an in situ formed [(RPO(2))(2)O](4-) ligand bridges two pairs of the dinuclear subunits. Magnetic studies on these complexes reveal that the phosphonate ligand is an effective conduit for magnetic interaction among the four copper centers present; a predominantly antiferromagnetic interaction is observed at low temperatures.  相似文献   

19.
The electrochemical and spectral properties of some copper(I) polypyridyl complexes based on 6,7-dihydrodibenzo[b,j][1,10]phenanthroline, dmbiq, and 6,7-dihydrodipyrido[2,3-b:3',2'-j][1,10]phenanthroline, dmbinap, are reported. These complexes are [Cu(dmbiq)(2)](+), 1; [Cu(dmbiq)(PPh(3))(2)](+), 2; [Cu(dmbinap)(2)](+), 3; and [Cu(dmbinap)(PPh(3))(2)](+), 4. 3 and 4 may be reduced to form ligand-based radical anion species. The resonance Raman spectra of 3(*)()(-)() and 4(*)()(-)() are almost identical and correspond closely to the spectrum of dmbinap(*)()(-)() and the reported spectra of complexes containing 2,2'-biquinoline radical anion moieties. Reduction processes for 1 and 2 are irreversible. For 1 the electronic spectral changes arising from reduction suggest demetallation of the complex. The structure of [Cu(C(18)H(12)N(4))(2)][BF(4)].CH(2)Cl(2) (3[BF(4)].CH(2)Cl(2)) was determined by single-crystal X-ray diffraction. It crystallized in the monoclinic space group P2(1)/c with cell dimensions a = 14.059(7) ?, b = 15.058(6) ?, c = 16.834(9) ?, beta = 111.56(5) degrees, Z = 4, rho(calcd) = 1.611 g/cm(3), and R(F(o)) = 0.0497.  相似文献   

20.
Hydride complexes IrHCl(2)(PiPr(3))P(2) (1) and IrHCl(2)P(3) (2) [P = P(OEt)(3) and PPh(OEt)(2)] were prepared by allowing IrHCl(2)(PiPr(3))(2) to react with phosphite in refluxing benzene or toluene. Treatment of IrHCl(2)P(3), first with HBF(4).Et(2)O and then with an excess of ArCH(2)N(3), afforded benzyl azide complexes [IrCl(2)(eta(1)-N(3)CH(2)Ar)P(3)]BPh(4) (3, 4) [Ar = C(6)H(5), 4-CH(3)C(6)H(4); P = P(OEt)(3), PPh(OEt)(2)]. Azide complexes reacted in CH(2)Cl(2) solution, leading to the imine derivative [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}P(3)]BPh(4) (5). The complexes were characterized by spectroscopy and X-ray crystal structure determination of [IrCl(2)(eta(1)-N(3)CH(2)C(6)H(5)){P(OEt)(3)}(3)]BPh(4) (3a) and [IrCl(2){eta(1)-NH=C(H)C(6)H(5)}{P(OEt)(3)}(3)]BPh(4) (5a). Both solid-state structure and (15)N NMR data indicate that the azide is coordinated through the substituted Ngamma [Ir]-Ngamma(CH(2)Ar)NNalpha nitrogen atom.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号