首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Hematite (α-Fe(2)O(3)) was grown on vertically aligned Si nanowires (NWs) using atomic layer deposition to form a dual-absorber system. Si NWs absorb photons that are transparent to hematite (600 nm < λ < 1100 nm) and convert the energy into additional photovoltage to assist photoelectrochemical (PEC) water splitting by hematite. Compared with hematite-only photoelectrodes, those with Si NWs exhibited a photocurrent turn-on potential as low as 0.6 V vs RHE. This result represents one of the lowest turn-on potentials observed for hematite-based PEC water splitting systems. It addresses a critical challenge of using hematite for PEC water splitting, namely, the fact that the band-edge positions are too positive for high-efficiency water splitting.  相似文献   

2.
A bottom‐up synthetic approach was developed for the preparation of mesoporous transition‐metal‐oxide/noble‐metal hybrid catalysts through ligand‐assisted co‐assembly of amphiphilic block‐copolymer micelles and polymer‐tethered noble‐metal nanoparticles (NPs). The synthetic approach offers a general and straightforward method to precisely tune the sizes and loadings of noble‐metal NPs in metal oxides. This system thus provides a solid platform to clearly understand the role of noble‐metal NPs in photochemical water splitting. The presence of trace amounts of metal NPs (≈0.1 wt %) can enhance the photocatalytic activity for water splitting up to a factor of four. The findings can conceivably be applied to other semiconductors/noble‐metal catalysts, which may stand out as a new methodology to build highly efficient solar energy conversion systems.  相似文献   

3.
周定华  范科 《催化学报》2021,42(6):904-919
为了解决能源危机与环境污染问题,发展一种可再生的清洁能源至关重要.太阳能是一种取之不尽用之不竭的清洁能源,而氢气是一种良好的能源载体.利用太阳能光电催化水分解制氢,是一项有望能够解决能源与环境问题的技术,具有很大的应用前景.其中,氧化铁因为具有合适的能带位置与带隙、良好的稳定性与廉价无毒等优点,成为一种理想的光阳极材料...  相似文献   

4.
光电化学水分解电池能够将太阳能直接转化为氢能,是一种理想的太阳能利用方式. p-n叠层电池具有理论转换效率高、成本低廉、材料选择灵活等优势,被认为是最有潜力的一类光电化学水分解电池. 然而,目前这类叠层电池的太阳能转化效率还不高,主要原因是单个电极的效率太低. 本文介绍了几种提高光电极分解水性能的方法--减小光生载流子的体相复合、表面复合以及抑制背反应等,同时综述了国内外关于几种p型半导体光阴极的研究进展,如Si、InP、CuIn1-x GaxS(Se)2、Cu2ZnSnS4等. 通过总结,作者提出一种p-Cu2ZnSnS4(CuIn1-xGaxS(Se)2)/n-Ta3N5(Fe2O3) 组装方式,有望获得高效低成本叠层光电化学水分解电池.  相似文献   

5.
A Rh-doped SrTiO(3) (SrTiO(3):Rh) photocatalyst electrode that was readily prepared by pasting SrTiO(3):Rh powder onto a transparent indium tin oxide electrode gave a cathodic photocurrent under visible-light irradiation (λ > 420 nm), indicating that the SrTiO(3):Rh photocatalyst electrode possessed p-type semiconductor character. The cathodic photocurrent increased with an increase in the amount of doped Rh up to 7 atom %. The incident-photon-to-current efficiency at 420 nm was 0.18% under an applied potential of -0.7 V vs Ag/AgCl for the SrTiO(3):Rh(7 atom %) photocatalyst electrode. The photocurrent was confirmed to be due to water splitting by analyzing the evolved H(2) and O(2). The water splitting proceeded with the application of an external bias smaller than 1.23 V versus a Pt counter electrode under visible-light irradiation and also using a solar simulator, suggesting that solar energy conversion should be possible with the present photoelectrochemical water splitting.  相似文献   

6.
Hematite (α-Fe2O3) is found to be one of the most promising photoanode materials used for the application in photoelectrochemical (PEC) water splitting due to its narrow band gap energy of 2.1 eV, which is capable to harness approximately 40% of the incident solar light. This paper reviews the state-of-the-art progress of the electrochemically synthesized pristine hematite photoanodes for PEC water splitting. The fundamental principles and mechanisms of anodic electrodeposition, metal anodization, cathodic electrodeposition and potential cycling/pulsed electrodeposition are elucidated in detail. Besides, the influence of electrodeposition and annealing treatment conditions are systematically reviewed; for examples, electrolyte precursor composition, temperature and pH, electrode substrate, applied potential, deposition time as well as annealing temperature, duration and atmosphere. Furthermore, the surface and interfacial modifications of hematite-based nanostructured photoanodes, including elemental doping, surface treatment and heterojunctions are elaborated and appraised. This review paper is concluded with a summary and some future prospects on the challenges and research direction in this cutting-edge research hotspot. It is anticipated that the present review can act as a guiding blueprint and providing design principles to the scientists and engineers on the advancement of hematite photoanodes in PEC water splitting to resolve the current energy- and environmental-related concerns.  相似文献   

7.
An ultrathin (ca. 2 nm) amorphous FeOOH overlayer was deposited conformally on a hematite nanostructure by a simple solution‐based precipitation method, to generate an oxygen evolution cocatalyst for efficient solar water splitting. This uniform and highly conformal coating of the ultrathin metal oxyhydroxide is rare and is distinguished from the layers prepared by other conventional methods. With the FeOOH overlayer as the cocatalyst, the water oxidation photocurrent of hematite increased by a factor of approximately two and the onset potential shifted in the cathodic direction by 0.12 V under 1 sun illumination. The enhanced performance was attributed to the improved water oxidation kinetics and the passivation of the surface states of the hematite.  相似文献   

8.
Photoelectrochemical (PEC) water splitting is an attractive strategy for the large‐scale production of renewable hydrogen from water. Developing cost‐effective, active and stable semiconducting photoelectrodes is extremely important for achieving PEC water splitting with high solar‐to‐hydrogen efficiency. Perovskite oxides as a large family of semiconducting metal oxides are extensively investigated as electrodes in PEC water splitting owing to their abundance, high (photo)electrochemical stability, compositional and structural flexibility allowing the achievement of high electrocatalytic activity, superior sunlight absorption capability and precise control and tuning of band gaps and band edges. In this review, the research progress in the design, development, and application of perovskite oxides in PEC water splitting is summarized, with a special emphasis placed on understanding the relationship between the composition/structure and (photo)electrochemical activity.  相似文献   

9.
BiVO4 has emerged as a promising material for solar water splitting. The poor ability of charge transport and separation always limits its performance for photoelectrochemical water splitting. Herein, we coupled n-type BiVO4 with p-type LaFeO3 and LaCoO3, achieving a photocurrent more than two times as high as bare BiVO4 at 1.23 V versus a reversible hydrogen electrode. Also, the onset potential was negatively shifted about 260 mV. The promotion of performance is mainly because the space charge layer in BiVO4 is broadened, and the band bend is enhanced, which facilitates the separation and transport of photo-generated charges.  相似文献   

10.
《Arabian Journal of Chemistry》2020,13(11):8372-8387
Photoelectrochemical (PEC) water splitting supplies an environmentally friendly, sustainable approach to generating renewable hydrogen fuels. Oxides semiconductors, e.g. TiO2, BiVO4, and Fe2O3, have been widely developed as photoelectrodes to demonstrate the utility in PEC systems. Even though significant effort has been made to increase the PEC efficiency, these materials are still far from practical applications. The main issue of metal oxides is the wide bandgap energy that hinders effective photons harvesting from sunlight. In solar spectrum, over 40% of the energy is located in the near-infrared (NIR) region. Developing sophisticated PEC systems that can be driven by NIR illumination is therefore essential. This review gives a concise overview on PEC systems based on the use of NIR-driven photoelectrodes. Promising candidates as efficient yet practical NIR-responsive photoelectrodes are suggested and discussed. Future outlooks on the advancement of PEC water splitting are also proposed.  相似文献   

11.
Photoelectrochemical(PEC)water splitting is an effective strategy to convert solar energy into clean and renewable hydrogen energy.In order to carry out effective PEC conversion,researchers have conducted a lot of exploration and developed a variety of semiconductors suitable for PEC water splitting.Among them,metal oxides stand out due to their higher stability.Compared with traditional oxide semiconductors,ferrite-based photoelectrodes have the advantages of low cost,small band gap,and good stability.Interestingly,due to the unique characteristics of ferrite,most of them have various tunable features,which will be more conducive to the development of efficient PEC electrode.However,this complex metal oxide is also troubled by severe charge recombination and low carrier transport efficiency,resulting in lower conversion efficiency compared to theoretical value.Based on this,this article reviews the structure,preparation methods,characteristics and modification strategies of various common ferrites.In addition,we analyzed the future research direction of ferrite for PEC water splitting,and looked forward to the development of more efficient catalysts.  相似文献   

12.
Reactions taking place on hematite (α-Fe(2)O(3)) surfaces in contact with aqueous solutions are of paramount importance to environmental and technological processes. The electrochemical properties of the hematite/water interface are central to these processes and can be probed by open circuit potentials and cyclic voltammetric measurements of semiconducting electrodes. In this study, electrochemical impedance spectroscopy (EIS) was used to extract resistive and capacitive attributes of this interface on millimeter-sized single-body hematite electrodes. This was carried out by developing equivalent circuit models for impedance data collected on a semiconducting hematite specimen equilibrated in solutions of 0.1 M NaCl and NH(4)Cl at various pH values. These efforts produced distinct sets of capacitance values for the diffuse and compact layers of the interface. Diffuse layer capacitances shift in the pH 3-11 range from 2.32 to 2.50 μF·cm(-2) in NaCl and from 1.43 to 1.99 μF·cm(-2) in NH(4)Cl. Furthermore, these values reach a minimum capacitance at pH 9, near a probable point of zero charge for an undefined hematite surface exposing a variety of (hydr)oxo functional groups. Compact layer capacitances pertain to the transfer of ions (charge carriers) from the diffuse layer to surface hydroxyls and are independent of pH in NaCl, with values of 32.57 ± 0.49 μF·cm(-2)·s(-φ). However, they decrease with pH in NH(4)Cl from 33.77 at pH 3.5 to 21.02 μF·cm(-2)·s(-φ) at pH 10.6 because of the interactions of ammonium species with surface (hydr)oxo groups. Values of φ (0.71-0.73 in NaCl and 0.56-0.67 in NH(4)Cl) denote the nonideal behavior of this capacitor, which is treated here as a constant phase element. Because electrode-based techniques are generally not applicable to the commonly insulating metal (oxyhydr)oxides found in the environment, this study presents opportunities for exploring mineral/water interface chemistry by EIS studies of single-body hematite specimens.  相似文献   

13.
《Journal of Energy Chemistry》2017,26(6):1094-1106
The explore and development of electrocatalysts have gained significant attention due to their indispensable status in energy storage and conversion systems, such as fuel cells, metal–air batteries and solar water splitting cells. Layered double hydroxides(LDHs) and their derivatives(e.g., transition metal alloys, oxides, sulfides, nitrides and phosphides) have been adopted as catalysts for various electrochemical reactions, such as oxygen reduction, oxygen evolution, hydrogen evolution, and CO_2 reduction, which show excellent activity and remarkable durability in electrocatalytic process. In this review, the synthesis strategies, structural characters and electrochemical performances for the LDHs and their derivatives are described. In addition, we also discussed the effect of electronic and geometry structures to their electrocatalytic activity. The further development of high-performance electrocatalysts based on LDHs and their derivatives is covered by both a short summary and future outlook from the viewpoint of the material design and practical application.  相似文献   

14.
能源和环境危机是当今社会面临的两大关键课题,利用太阳光驱动化学反应、将太阳能转化为化学能是解决上述问题的重要措施。通过光催化分解水是直接利用太阳能生产氢燃料的有效策略。光催化水分解过程可以分为三个基元步骤:光吸收、电荷分离与迁移、以及表面氧化还原反应。助催化剂可有效提高电荷分离效率、提供反应活性位点并抑制催化剂光腐蚀的发生,进而提高水分解效率。助催化剂也可以通过活化水分子以提高表面氧化还原动力学,进而提升整体光催化反应的太阳能转换效率。本文综述了助催化剂在光催化反应中的重要作用以及目前常用的助催化剂类型,详细说明了在光催化全解水过程中双助催化剂体系的构建及作用机理,并根据限制全解水的关键因素提出了新型助催化剂的设计策略。  相似文献   

15.
Although metal oxide nanocrystals are often highly active, rapid aggregation (particularly in water) generally precludes detailed solution‐state investigations of their catalytic reactions. This is equally true for visible‐light‐driven water oxidation with hematite α‐Fe2O3 nanocrystals, which bridge a conceptual divide between molecular complexes of iron and solid‐state hematite photoanodes. We herein report that the aqueous solubility and remarkable stability of polyoxometalate (POM)‐complexed hematite cores with 275 iron atoms enable investigations of visible‐light‐driven water oxidation at this frontier using the versatile toolbox of solution‐state methods typically reserved for molecular catalysis. The use of these methods revealed a unique mechanism, understood as a general consequence of fundamental differences between reactions of solid‐state metal oxides and freely diffusing “fragments” of the same material.  相似文献   

16.
An overview of a collaborative experimental and theoretical effort toward efficient hydrogen production via photoelectrochemical splitting of water into di-hydrogen and di-oxygen is presented here. We present state-of-the-art experimental studies using hematite and TiO(2) functionalized with gold nanoparticles as photoanode materials, and theoretical studies on electro and photo-catalysis of water on a range of metal oxide semiconductor materials, including recently developed implementation of self-interaction corrected energy functionals.  相似文献   

17.
Converting solar energy into hydrogen through photoelectrochemical (PEC) water splitting offers a promising route towards a fully renewable energy economy. A fundamental understanding of photogenerated charge recombination processes in semiconducting photoelectrodes is a key consideration in optimizing solar water splitting cells and intensity-modulated photovoltage spectroscopy (IMVS) has recently emerged as a promising technique for gaining new insight. However, the interpretation of IMVS data under various conditions (that is, when photoelectrodes are in sacrificial electrolytes or employ catalytic overlayers) is not complete. Using IMVS data we present herein an analysis of charge recombination processes under open circuit conditions on a model photoanode system: nanostructured hematite. Employing two sacrificial oxidation conditions compared to standard water oxidation conditions, our IMVS results establish a direct correlation between surface recombination processes and the low frequency IMVS response. We found that surface intermediate states for water oxidation under open circuit condition exhibit a lifetime of 229 ms under standard illumination conditions. Applying a nickel iron oxide overlayer also gives insight into surface passivation effects through IMVS analysis of photoanode system.  相似文献   

18.
The conversion of photon energy to chemical energy and vice versa requires the close arrangement of absorber/emitters and (electro)chemical reactions sites. This review considers local measurement techniques aiding in the design of efficient oxide systems for the utilization of light as energy source and as efficient detection principle. Artificial photoelectrochemical systems are often build on oxides as they are abundant and have semiconducting properties. However, no single oxide fulfills all requirements for an efficient conversion of sunlight to chemical energy and thus complex oxides are explored. These oxides might be obtained by doping oxides with other metal cations or by combining different oxides for absorbance and catalyzing the desired reaction, mainly water splitting. Due to the enormous amount of possible combinations combinatorial search for new material systems has been pursued and accelerated around the world making use of local photoelectrochemical characterization techniques in the screening step. Local detection schemes based on scanning electrochemical microscopy and scanning electrochemical cell microscopy also provide details about the kinetics for heterogeneous charge transfer and the release of soluble reaction products. During the recent years the scanning probe methods have been complemented by local detection of fluorescent reaction products that are formed by heterogeneous electron transfer reactions from and non-fluorescent precursor molecules. Such detection is possible with single molecule sensitivity and spatial resolution exceeding the diffraction limit (superresolution). Such approaches enabled the discovery of population within ensembles of metal oxide nanoparticles that are distinguished by the location and reactivity of their reaction sites. Optical techniques for measuring Faradaic currents hold great promise for the measurement of very low currents beyond the study of photoelectrochemistry of metal oxides.  相似文献   

19.
Zheng  Shizhao  Wang  Gaopeng  Liu  Tongfa  Lou  Lingyun  Xiao  Shuang  Yang  Shihe 《中国科学:化学(英文版)》2019,62(7):800-809
The electron transport layer plays a vital function in extracting and transporting photogenerated electrons, modifying the interface, aligning the interfacial energy level and minimizing the charge recombination in perovskite solar cells. This review summarizes the recent research progress on electron transport materials of metal oxides, organic molecules and multilayers. The doped metal oxides as electron transport materials in regular perovskite solar cells show improved device performance relative to their non-doped counterpart due to enhanced electron mobility and energy level alignment. The non-fullerene organic electron transport materials with better electron mobility and tunable energy level alignment need to be further designed and developed despite their advantages of mechanical flexibility and wide range tunability. The multilayer electron transport materials are suggested to be an important direction of research for efficient and stable perovskite solar cells because of their favorable synergistic interaction.  相似文献   

20.
Energy production and environmental pollution are the two major problems the world is facing today. The depletion of fossil fuels and the emission of harmful gases into the atmosphere leads to the research on clean and renewable energy sources. In this context, hydrogen is considered an ideal fuel to meet global energy needs. Presently, hydrogen is produced from fossil fuels. However, the most desirable way is from clean and renewable energy sources, like water and sunlight. Sunlight is an abundant energy source for energy harvesting and utilization. Recent studies reveal that photoelectrochemical (PEC) water splitting has promise for solar to hydrogen (STH) conversion over the widely tested photocatalytic approach since hydrogen and oxygen gases can be quantified easily in PEC. For designing light-absorbing materials, semiconductors are the primary choice that undergoes excitation upon solar light irradiation to produce excitons (electron-hole pairs) to drive the electrolysis. Visible light active semiconductors are attractive to achieve high solar to chemical fuel conversion. However, pure semiconductor materials are far from practical applications because of charge carrier recombination, poor light-harvesting, and electrode degradation. Various heteronanostructures by the integration of metal plasmons overcome these issues. The incorporation of metal plasmons gained significance for improving the PEC water splitting performance. This review summarizes the possible main mechanisms such as plasmon-induced resonance energy transfer (PIRET), hot electron injection (HEI), and light scatting/trapping. It also deliberates the rational design of plasmonic structures for PEC water splitting. Furthermore, this review highlights the advantages of plasmonic metal-supported photoelectrodes for PEC water splitting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号