首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes the synthesis of ZrW2O8 by the use of an aqueous citrate-gel method in order to prepare a fine, pure and homogeneous oxide mixture suitable for ceramic processing. The thermal expansion coefficient thus obtained for α-ZrW2O8 is −10.6 × 10−6 °C−1 (50–125 °C) whereas for the β-ZrW2O8 a value of −3.2 × 10−6 °C−1 (200–300 °C) is obtained. The advantages of the use of a sol–gel method is expressed in the very homogeneous end-products. The paper describes crystallographic data, morphological structure and the thermal expansion properties of the ZrW2O8 material. Moreover, photoluminescence and photochromic properties specific to the precursor gel are described and analyzed. These effects support our views that the precursors show homogeneity up to nanometer level.  相似文献   

2.
New potassium-conducting solid electrolytes in the mixed gallate-ferrite systems (1 − x)Ga2O3 · xFe2O3 · 0.25TiO2 · K2O and 1.5[(1 − x)Ga2O3 · xFe2O3] · TiO2 · 2K2O are synthesized and studied. The electrolytes exhibit high ionic conductivity in the test temperature range of 300 to 750°C (above 10−2 S/cm at 300°C and above 10−1 S/cm at 700°C). An increase in the conductivity with increasing concentration of iron in the specimens is a general tendency. Possible reasons for the effect of Ga/Fe ratio in the structure of solid electrolytes on their transport properties are discussed.  相似文献   

3.
The thermal decomposition of iron (III) acrylate, [Fe3O(CH2=CHCOO)6 · 3H2O]OH (FeAcr), a monomer with a complex cluster cation, has been studied at 200–370 °C. Thermal transformations of FeAcr occur in two temperature regions. The rates of gas evolution in the low temperature region (200–300 °C) and the high temperature region (300–370 °C) are described by first-order equations withk=4.2 · 1021exp[−59000/(RT)] s−1 andk=1.3 · 106exp[−30500/(RT)] s−1, respectively. A study of the qualitative and quantitative composition of the products of FeAcr thermolysis was carried out. The thermal transformation of FeAcr is a complex process of dehydration, degradation, and polymerization in the solid phase followed by decarboxylation of the metal-carboxyl groups of the polymer. for part 33 see Ref. 1. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 10, pp. 1743–1750, October, 1993.  相似文献   

4.
Polymer electrolyte systems were prepared for the first time by dissolution of amidomagnesium chlorides in poly(ethylene oxide), (PEO). For the preparation, solutions of (hexamethyldisilylamido)magnesium chloride, (dimethylpyrrolyl)magnesium chloride, (diisopropylamido)magnesium chloride, piperidinomagnesium chloride and morpholinomagnesium chloride were chosen. The composition of these polymer electrolyte systems corresponds to the general formula R2NMgCl·P(EO)n·THF. Most work has been done with the system (hexamethyldisilylamido)magnesium chloride in PEO, (Me3Si)2NMgCl·P(EO)n·THF, with n= 3, 4, 5, or 7. The electrolytes have a soft rubber-like consistency. At 30 °C, electrical conductivities of 10−6–10−5 S/cm were found. The conductivities were measured in the temperature range 20–60 °C. Within this temperature range a linear dependence of the logarithms of the conductivity on the inverse temperature was found and activation energies for the conducting process of 30–60 kJ/mol were calculated. Using those polymer electrolytes with a high content of the amidomagnesium compound, a reversible magnesium deposition takes place by cathodic reduction at potentials below −1.9 V vs. a Ag/AgCl reference electrode. These polymer electrolytes were found to be stable against oxidation up to about −0.3 V vs. Ag/AgCl. Electronic Publication  相似文献   

5.
 The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  相似文献   

6.
The kinetics of cation exchange between natural amorphized microporous zirconosilicate terskite Na4ZrSi6O15(OH)2 · H2O and aqueous solutions of cesium fluoride was studied calorimetrically under isothermal conditions, in the temperature range of 27.5 to 55.2°C, at CsF concentrations of 0.6–2.2 mol/l. The rate of the process was described by the first-order kinetic equation with the rate constant k, h−1 = 3.1 × 103 C CsF0.92 exp(−(21 ± 8) × 103/RT). Upon replacing Na+ with Cs+, the first-order equilibrium was observed to shift abruptly toward the Cs-substituted sorbent form, where Cs2O content after saturation was 25.5–29.1 wt %. The average heat of ion exchange Q 0 over the temperature range 27.5–32.4°C was shown to be ∼3.4 kJ per 1 mol of Na+ ions. We conclude that sorbents based on A-terskite are of practical interest for the processes of extracting 137Cs isotope from water.  相似文献   

7.
In situ developments of platelike spodumene–diopside grains were obtained by controlled devitrification of the complex system Li2O–CaO–MgO–Al2O3–SiO2 glass. The crystallization mechanisms of spodumene–diopside glass were measured by isothermal and non-isothermal processes using classical and differential thermal analysis techniques. The Avrami constant n was 2.0–2.1, indicating two-dimensional crystal growth and platelike grains. The crystalline phases precipitated first were high-quartzs.s., then transformed to β-spodumene and diopside. The Flexural strength, fracture toughness and thermal shock resistance (in 20°C water) increased from 145 MPa, 1.3 MPa m1/2, 800°C (pure spodumene) to 197 MPa, 2.9 MPa m1/2 and 920°C (spodumene–diopside) with low thermal expansion coefficient (from 3∼9·10–7 to 11.8·10–7 K–1). This mean in situ developments of platelike spodumene–diopside grains reinforced the low thermal expansion coefficient glass-ceramics.  相似文献   

8.
Nanosized zinc aluminate spinel (gahnite, ZnAl2O4) powders were prepared by sol−gel technique at low sintering temperatures. Aluminium-sec-butoxide [Al(OsBu)3] and zinc nitrate hexahydrate Zn(NO3)2 . 6H2O were used as starting materials. Gels with and without chelating agent were prepared. Ethyl-acetoacetate (C6H10O3) was used as a chelating agent in order to control the rate of hydrolysis of Al(OsBu)3. The dried gels and thermally treated samples were characterized by means of Differential Thermal Analysis and Thermo-Gravimetric Analysis (DTA, TGA), X-ray Diffraction (XRD), Fourier Transform Infrared spectroscopy (FTIR) and Transmission Electron Microscopy (TEM). The surface area was measured by Brunauer-Emmet-Teller (BET) adsorption–desorption isotherms. It has been established that chelation enables to obtain a transparent gel. The thermal evolution of gels was characterized by two crystallization processes in the range 200–400 °C and 600–700 °C. Both processes yielded pure ZnAl2O4 as evidenced by XRD, i.e. zinc aluminate spinel powders were produced by gel heat-treatment at temperatures as low as 300 °C. The average gahnite crystallite size for the samples sintered in the temperature range of 400–1000 °C has been calculated from the broadening of XRD lines revealing that nanocrystalline powders were prepared. The surface areas measured for the samples fired at 700 °C for 2 h were 43.1 and 62.6 m2 g−1, for sample without and with the chelating agent, respectively. TEM micrographs confirmed the nano-scale size of particles.  相似文献   

9.
Fullerenyl radicals (FR) RC60 · and chemiluminescence (CL) are generated in the presence of O2 in C60—R3Al (R = Et, Bui) solutions in toluene (T = 298 K). The FR are formed due to the addition of the R· radical, which is an intermediate of R3Al autooxidation, to C60. Mass spectroscopy and HPLC were used to identify EtnC60Hm (n, m = 1–6), EtpC60 (p = 2–6), and dimer EtC60C60Et as stable products of FR transformations. As found by ESR, the EtC60 · radical (g = 2.0037) is also generated by photolysis of solutions obtained after interaction in the (C60— R3Al)—O2 system. In the presence of dioxygen, the FR is not oxidized but yields complexes with O2, which appear as broadening of the ESR signals. Chemiluminescence arising in the (C60—R3Al)—O2 system is much brighter (I max = 1.86·108 photon s−1 mL−1) than the known background CL (I max = 6.0·106 photon s−1 mL−1) for the autooxidation of R3Al and is localized in a longer-wavelength spectral region (λmax = 617 and 664 nm). This CL is generated as a result of energy transfer from the primary emitter 3CH3CHO* to the products of FR transformation: RnC60Hm, RpC60, and EtC60C60Et. Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 205–213, February, 2007.  相似文献   

10.
A two-dimensional network compound [Ce(DMF)4(H2O)][α-BW12O40]·H2O·(HDMA)2 (HDMA = protoned dimethylamine, DMF = N,N-dimethylformamide) was synthesized from α-H5BW12O40·nH2O, Ce(NO3)3·6H2O and DMF and characterized by IR, UV spectra and TG-DTA. The result of the X-ray single crystal diffraction indicates that the crystal is monoclinic, space group P21/n, with unit cell dimensional: a = 1.1983(3), b = 2.4216(5), c = 1.9517(4) nm, β = 92.91(3)°, Z = 4, R 1 = 0.07710, wR 2 = 0.1416. Structural analysis indicates that every [Ce(DMF)4(H2O)]3+ building block is surrounded by three adjacent [α-BW12O40]5− polyanions, meanwhile, every [α-BW12O40]5− polyanion interconnects with three neighboring [Ce(DMF)4(H2O)]3+ subunits, by making use of which two-dimensional network structure can be constructed. The result of thermogravimetric analysis manifests that the title compound has two-stage weight loss and the decomposition temperature of the title polyanionic framework is 560°C. The electrochemical analysis shows the title polyanion has three-step redox processes in the pH = 4–7 media.  相似文献   

11.
A study of fixation of caesium on crystalline titania by co-precipitation was carried out. A maximum loading of ∼46wt% of caesium was found to be incorporated in the titania matrix. High leach-resistivity of Cs cations was observed to be in the order of 10−6–10−8 g.m−2.d−1 by Soxhlet flow refluxing at 97 °C of the composite material calcined at 800, 1000 °C for 48 hours. The analysis of X-ray powder diffractions of the composite materials revealed that cesium was fixed in the crystal lattice of host titania with the formation of new mineral phases of CsTi4O9 and Cs2Ti5O11. The results, taken together, implicate that a better fixation of caesium on titania can be achieved by calcination at 1000 °C for 48 hours.  相似文献   

12.
The Er3+-doped Al2O3 nanopowders have been prepared by the sol-gel method, using the aluminium isopropoxide [Al(OC3H7)3]-derived γ-AlOOH sols with addition of the erbium nitrate [Er(NO3)3·5H2O]. The five phases of γ-(Al,Er)2O3, θ-(Al,Er)2O3, α-(Al,Er)2O3, ErAlO3, and Al10Er6O24 were detected with the 0–20 mol% Er3+-doped Al2O3 nanopowders at the different sintering temperature of 600–1200°C. The average grain size was increased from about 5 to 62 nm for phase transformation of undoped γ-Al2O3→α-Al2O3 at the sintering temperature from 600 to 1200°C. At the same sintering temperature, average grain size was decreased with increase of the Er3+ doping concentration. Infrared absorption spectra of γ-Al2O3 and θ-Al2O3 nanopowders showed the two broad bands of 830–870 and 550–600 cm−1, the three broad bands of 830–870, 750–760, and 550–600 cm−1, respectively. The infrared absorption spectra for the α-Al2O3 nanopowder showed three characteristic bands, 640, 602, and 453 cm−1. The two characteristic bands of 669 and 418 cm−1 for Er2O3 clusters were observed for the Er3+-doped Al2O3 nanopowders when Er3+ doping concentration was increased up to 2 mol%. The 796, 788, 725, 692, 688, 669, 586, 509, 459, and 418 cm−1 are the characteristic bands of Al10Er6O24 phase.  相似文献   

13.
The phase and chemical compositions of the precipitates forming in the Sr(VO3)2-VOCl2-H2O system in the V4+/V5+ = 0.11–9 range at 80–90°C are reported. At pH 1–3 and V4+/V5+ = 0.25−9, the general formula of the precipitated compounds is Sr x V y 4+ V12−y 5+O31−δ·nH2)(0.37 ≤ x ≤ 1.0, 1.7 ≤ y ≤ 3.0, 0.95 ≤ δ ≤ 2.1). Polyvanadates containing the largest amount of vanadium(IV) are obtained at an initial V4+/V5+ ratio of 9 and pH 1.9. Precipitation from solutions at pH 3 takes place only in the presence of the VO2+ ion, and the highest precipitation rate is observed at V4+/V5+ = 0.11. The process is controlled by a second-order reaction on the polyvanadate surface. Under hydrothermal conditions at 180°C, Sr0.25V2O5·1.5H2O nanorods are obtained from solutions with a V4+/V5+ molar ratio of 0.1 at pH 3. The nanorods, 30–100 nm in diameter and up to 2–3 μm in length, have a layered structure with an interlayer spacing of 10.53 ± 0.08 ?.  相似文献   

14.
Anatase Ti0.94Nb0.06O2 (TNO) films were fabricated on glass substrates by sol–gel method using a dip-coating technique. The annealing treatment was separated into two steps, first in air at 350–550 °C for 1 h and then in vacuum of 4.0 × 10−4 Pa at 550 °C for 1 h. The influence of vacuum annealing treatment to the electrical and optical properties was discussed. Especially, the role of air annealing treatment from 350 to 550 °C on the crystallization and the structure of the films was analyzed. It is proved that the films annealed at 550 °C in air and then 550 °C in vacuum exhibited the minimum resistivity of 19.3 Ω·cm and the average optical transmittance of about 75% in the visible range, indicating that the sol–gel method is a feasible and promising method to fabricate TNO films.  相似文献   

15.
 Procedures for the preparation at low temperature (80 °C) of uniform colloids consisting of Mn3O4 nanoparticles (about 20 nm) or elongated α-MnOOH particles with length less than 2 μm and width 0.4 μm or less, based on the forced hydrolysis of aqueous manganese(II) acetate solutions in the absence (Mn3O4) or the presence (α-MnOOH) of HCl are described. These solids are only produced under a very restrictive range of reagent concentrations involving solutions of 0.2–0.4 mol dm−3 manganese(II) acetate for Mn3O4 and of 1.6–2 mol dm−3 Mn(II) and 0.2–0.3 mol dm−3 HCl for α-MnOOH. The role that the acetate anions play in the precipitation of these solids is analyzed. It seems that these anions promote the oxidation of Mn(II) to Mn(III), which readily hydrolyze causing precipitation. The evolution of the characteristics of the powders with temperature up to 900 °C is also reported. Thus, Mn3O4 particles transform to Mn2O3 upon calcination at 800 °C; this is accompained by a sintering process. The α-MnOOH sample also experiences several phase transformations on heating. First, it is oxidized at low temperatures (250–450 °C) giving MnO2 (pyrolusite), which is further reduced to Mn2O3 at 800 °C. After this process the particles still retain their elongated shape. Received: 19 October 1999 Accepted: 24 November 1999  相似文献   

16.
Summary.  The diagram of the ternary system Mg2+/Cl, SO4 2−–H2O was established at 15°C by means of analytical and conductimetric measurements. Three compounds were found in this diagram, which are MgSO4·6H2O, MgSO4·7H2O, and MgCl2·6H2O. The solubility field of MgSO4·7H2O is important whereas those of MgSO4·6H2O and MgCl2·6H2O are small. The compositions (mass-%) of the two invariant points determined by the two methods are: MgSO4:MgCl2=2.73:33.80 and MgSO4: MgCl2=3.38:28.91. Both the measured and the calculated isotherm at 15°C have been used for modelling of the diagram Mg2+/Cl, SO4 2−–H2O between 0 and 35°C. The polythermal invariant point was approximately located between 15 and 10°C.  Corresponding author. E-mail: ariguib@planet.tn Received October 16, 2002; accepted (revised) December 3, 2002 Published online April 24, 2003 RID="a" ID="a" Dedicated to Prof. Dr. Heinz Gamsj?ger on the occasion of his 70th birthday  相似文献   

17.
The performance of Ca2Fe1.4Co0.6O5–Ce0.9Gd0.1O1.95 (CFC–CGO) composite cathode has been investigated for potential application in intermediate-temperature solid oxide fuel cells (IT-SOFCs). The composite cathodes are prepared and characterized by XRD and SEM, respectively. The electrochemical properties of the composite cathodes are investigated using AC impedance and DC polarization methods from 500 to 700 °C under different oxygen partial pressures. The polarization resistance (R p) decreases with the increase of CGO content in the composite electrode. The addition of 40 wt.% CGO in CFC results in the lowest R p of 0.48 Ω cm2 at 700 °C in air. Oxygen partial pressure dependence study indicates that the charge-transfer process is the rate limiting step for oxygen reduction reaction. CFC-40CGO composite cathode exhibits the lowest overpotential of about 67 mV at a current density of 85 mA cm−2 at 700 °C in air.  相似文献   

18.
Nanometer MgO samples with high surface area, small crystal size and mesoporous texture were synthesized by thermal decomposition of MgC2O4 · 2H2O prepared from solid-state chemical reaction between H2C2O4 · 2H2O and Mg (CH3COO)2 · 4H2O. Steam produced during the decomposition process accelerated the sintering of MgO, and MgO with surface area as high as 412 m2 · g−1 was obtained through calcining its precursor in flowing dry nitrogen at 520°C for 4 h. The samples were characterized by X-ray diffraction, N2 adsorption, transmission electron microscopy, thermogravimetry, and differential thermal analysis. The as-prepared MgO was composed of nanocrystals with a size of about 4–5 nm and formed a wormhole-like porous structure. The MgO also had good thermal stability, and its surface areas remained at 357 and 153 m2·g−1 after calcination at 600 and 800°C for 2 h, respectively. Compared with the MgO sample prepared by the precipitation method, MgO prepared by solid-state chemical reaction has uniform pore size distribution, surface area, and crystal size. The solid-state chemical method has the advantages of low cost, low pollution, and high yield, therefore it appears to be a promising method in the industrial manufacture of nanometer MgO. Translated from Chinese Journal of Catalysis, 2006, 27(9): 793–798 (in Chinese)  相似文献   

19.
A-site-deficient perovskite cathode material La0.58Sr0.4Co0.2Fe0.8O3 − δ (L58SCF) is coated on the yttria-stabilized zirconia electrolyte by screen-printing technique. Several key fabrication parameters including selection of additives (binder and pore former), effect of coating thickness, sintering temperature and time on the microstructure, and electrochemical performance of cathode are investigated by scanning electron microscopy and electrochemical impedance spectroscopy. We study the microstructure and the electrochemical property of the cathode with different kinds of additives. Results show that the cathode possesses fine microstructure, enough porosity, and ideal electrochemical property when polyvinyl butyral serves as both binder and pore former in the cathode. The cathode with three screen-printing coats (thickness 28 ± 7 μm, weight 6.07 ± 0.72 mg cm−2) sintering at 1,000 °C for 2 h shows lower polarization resistance of 0.183 Ω cm2 at 800 °C. Based on the optimized parameters, the polarization resistances of the L58SCF–Ce0.8Gd0.2O1.9 – δ composite cathode display the R p values of 0.067 Ω cm2 at 800 °C, 0.106 Ω cm2 at 750 °C, 0.225 Ω cm2 at 700 °C, and 0.550 Ω cm2 at 650 °C.  相似文献   

20.
Homopolymerization of methyl methacrylate (MMA) was carried out in the presence of triphenylstibonium 1,2,3,4-tetraphenyl-cyclopentadienylide as an initiator in dioxane at 65°C±0·l°C. The system follows non-ideal radical kinetics (R p ∝ [M]1·4 [I]0·44 @#@) due to primary radical termination as well as degradative chain-transfer reaction. The overall activation energy and average value ofk 2 p /k t were 64 kJmol−1 and 0.173 × 10−3 1 mol−1 s−1 respectively  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号