首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

A radiochemical technique for estimation of 90Sr concentration by direct extraction of 90Y with bis (2-ethylhexyl) phosphate (HDEHP) in toluene was developed and standardized. About 90% 90Sr retained in the aqueous phase at the optimized pH 4–4.5. Cerenkov counting with 0.04 g mL−1 sodium salicylate as a wavelength shifter resulted in 7.5 fold increase its Cerenkov counting efficiency. The method was validated by estimating 90Sr in certified reference materials like, IAEA TEL 2016-03 drinking water, Spruce needle and IAEA-156 Clover. The interference of naturally occurring Ra and its β progeny especially Pb was eliminated by means of Cerenkov counting. Conventional radiochemical separation was used to compare 90Sr activity in effluent samples.

  相似文献   

2.
Determination of 90Sr in environmental solid samples is a challenging task because of the presence of so many other radionuclides in samples of interest. This problem was dealt with by radiochemical separation of strontium followed by yttrium separation and Cerenkov counting of the high-energy ??-particle emissions of 90Y in order to quantitate 90Sr. In this work, an improved method is described for the determination of 90Sr in soil samples, through the separation of the daughter 90Y at equilibrium. The procedure is based on the HDEHP solvent extraction in combination with liquid scintillation spectrometry (LSS). A low background Quantulus has been optimized for low level counting of Cerenkov radiation emitted by the hard ??-emitter 90Y. The analytical quality of the method has been checked by analyzing IAEA Soil-375 reference materials. The analytical method has also been successfully applied to the determination of 90Sr for moss-soil samples in inter-laboratory exercises through IAEA??s ALMERA network. The chemical recovery for 90Y extraction ranged from 80 to 85% and the counting efficiency was 73% in the window 25?C400 keV.  相似文献   

3.
The determination of 90Sr through the Cerenkov radiation emitted by its descendant 90Y is a well-known method and firmly established in literature. Nevertheless, in order to obtain an accurate result based on a Cerenkov measurement, the experimental work must be extremely rigorous because the efficiency of Cerenkov counting is especially sensitive to the presence of colour. Any traces of colour in the sample produce a decrease in the number of photons detected in the photomultipliers and, therefore, this might cause a diminution in Cerenkov counting efficiency. It is essential not only to detect the effect of colour quenching in the sample but also to correct the decrease in counting efficiency. For this reason, colour quenching correction curves versus counting efficiency are usually done when measuring through Cerenkov counting. One of the most widely used techniques to evaluate colour quenching in these measurements is the channel ratio method, which consists of the measurement of the shift of the spectrum measuring the ratio of counts in two different windows. The selection of the windows for the application of the corrections might have an influence on the quality of the fitting parameters of the correction curves efficiency versus colour quenching degree and hence on the final 90Sr result. This work is focused on the calculation of the counting efficiency decrease using the channel ratio method and on obtaining the best fitting correction curve. For this purpose, empirical curves obtained through artificial quenchers have been studied and the results have been tested in real samples. Additionally, given that the Packard Tri-Carb 3170 TR/SL liquid scintillation counter is a novel detector for use in Cerenkov counting, the previous calibration of the Tri-Carb 3170 TR/SL detector, necessary for the measurement of 90Sr, is included.  相似文献   

4.
The presence of 89Sr and 90Sr in the biosphere constitutes a biological hazard. There are several analytical methods for the determination of 89Sr and 90Sr. Three analytical methods of various application fields using selective Sr resin for Sr separation and DGA resin for Y separation and measuring techniques, i.e. liquid scintillation spectrometry and Cerenkov counting are discussed in the paper. The calculation techniques are compared in the aspects such as trueness and accuracy of the results and the limit of detection. Uncertainties and detection limits are calculated using the spreadsheet method.  相似文献   

5.
An improved and rapid method is described for the determination of 90Sr in environmental samples, through the separation of the daughter 90Y at equilibrium. The procedure is based on the HDEHP solvent extraction in combination with liquid scintillation spectrometry (LSS). A low background QuantulusÔ has been optimized for low level counting of Cerenkov radiation emitted by the hard b-emitter 90Y. The counting efficiency was 60% and the background 0.53 cpm. The reliability and reproducibility of the method have been checked using IAEA reference materials. The chemical recovery for 90Y extraction ranges from 83 to 90%.  相似文献   

6.
We studied the use of an extraction chromatography for determination of 90Sr in contaminated water samples. The aim of our work was to compare selected products from the point of view of the strontium chemical yields and analysis time. Three commercial products, 3M Empore? Strontium Rad Disk, AnaLig® Sr-01 gel, Sr®Resin, and two classical methods, liquid?Cliquid extraction with tributhylphosphate and carbonate co-precipitation, were tested for the separation of 90Sr. The water sample from nuclear power plant A1 Jaslovske Bohunice was used for radiochemical analysis of 90Sr volume activity. Samples were traced with 85Sr to monitor strontium chemical recovery and counted either by Cerenkov counting on TRI CARB 2900 TR liquid scintillation counter or low level alpha?Cbeta proportional counter.  相似文献   

7.
A relatively simple and rapid radioanalytical method, limited to milk, is adapted for investigating soil, biological and water samples for90Sr. The method is based on a selective separation and successive counting of equilibrium quantities of its daughter 90Y, which can be extracted by tributyl phosphate from nitrate medium and stripped by conc. ammonia solution. 90Y is separated from possible iron and measured by Cerenkov counting. The procedure is thoroughly tested with certified reference materials and used lately for determining90Sr in some environmental samples in the Riyadh region. The results obtained are given and discussed.  相似文献   

8.
The procedure for the assay of90Sr or89Sr in the presence of a weak beta-emitter, such as137Cs is described which could be applicable in studies on the purification and decontamination of aqueous radioactive wastes by ion-exchangers. The influence of colour-quenchers on the counting efficiency of radiostrontium has also been investigated.  相似文献   

9.
The methodology for the rapid determination of 89,90Sr in wide range of activity concentration is given. Methodology is based on simultaneous separation of strontium and yttrium from samples by mixed solvent anion exchange chromatography, mutual separation of 89,90Sr from 90Y by hydroxide precipitation and quantitative 89,90Sr determination by Cherenkov counting within 3 days. It is shown that Y and Sr can be efficiently separated from alkaline, alkaline earth and transition elements as well as from lanthanides and actinides on the column filed by strong base anion exchanger in nitrate form and 0.25 M HNO3 in mixture of ethanol and methanol as eluent. Decontamination factor for Ba, La and other examined elements except calcium is low and can not affect quantitative determination in predictable circumstances. Methodology for quantitative determination by Cherenkov counting based on following the changes of sample activity over time is described and discussed. It has been shown that 89,90Sr can be determined with acceptable accuracy when 89Sr/90Sr ratio is over 10:1 and that separation of Y enables reliable determination of 89Sr and 90Sr in wide range of 89Sr/90Sr ratios (60:1) and in some cases in presence of other yttrium and strontium isotopes. The methodology was tested by determination of 89,90Sr in Analytics crosscheck samples (nuclear waste sample) and ERA proficiency testing samples (low level activity samples). Obtained results shows that by using of low level liquid scintillation counter it can be possible to determine 89Sr and 90Sr in wide range of concentration activity (1–1,000 Bq/L/kg) with uncertainty below 10% within 2–3 days. Results also show that accuracy of determination of 89Sr (and 90Sr) strongly depends on the determination of difference between separation and counting time when activity ratio of 89Sr/90Sr is high. Examination the influence of media and vial type on background radiation and counting efficiency has shown that lowest limit of determination can be obtained by using of HNO3 in plastic vials as counting media, because in this combination figure of merit is maximized. For the recovery of 50% and 100 min of counting time estimated MDA is 55 Bq and 90 Bq for 90Sr and 89Sr, respectively. Analysis of combined uncertainty shows that it mainly depends on uncertainty of efficiency and recovery determination, uncertainty of activities determination for both isotopes and level of background radiation.  相似文献   

10.
A method is described for the determination of89Sr and90Sr in samples of plant and animal origin. The Rehak-Feddersen method was modified to measure90Sr. Modification was made in the sample preparation and in the toluene-HDEHP [di(2-ethylhexyl)phosphoric acid] extraction. After the extraction of yttrium, strontium is separated with nitric acid and—calculating with a correction factor—89Sr can directly be determined. Namely,89Sr can be measured in an aqueous solution by a liquid scintillation technique with an efficiency of 30% while90Sr with 1.4% only. Quenching of the solution—depending on the composition—which may influence the measurement of90Y and89Sr was also examined. Detection limits and reproducibilities are given. Finally, evaluation of the experimental data is reported.   相似文献   

11.
The Environmental Survey Laboratory is responsible for the monitoring of radioactivity due to natural and artificially produced radionuclides in a variety of samples available around the nuclear facilities at Tarapur. Standard methods of radiochemical separation and counting are followed to determine -emitters in various matrices. To make the measurement simple and detect lower levels of contamination in some of the matrices, a method was developed to measure the high energy gross -activity primarily due to 90Y in borehole water and urine samples of occupational workers by Cerenkov counting in a liquid scintillation analyser. Cerenkov counting results of borehole samples were compared with the total gross -activity measured by a low background beta-counter. The combined measurements were used to evaluate 90Sr and 137Cs levels without chemical separation or gamma-spectrometry. Cerenkov counting technique was also utilised to evaluate 40K in drinking water and intercomparison water samples. The paper presents the methodology and results of a few measurements using the technique.  相似文献   

12.
A procedure for semi-automatic isolation and determination of radioactive strontium from natural samples was developed. The method was tested by the determination of90Sr in soil samples and the results obtained were compared to those obtained by the standard procedure. The procedure consists of leaching of strontium (and other cations as well) from soil samples with a water suspension of the cation exchanger Amberlite IR-20, the separation of strontium from other cations, e.g., potassium, calcium, sodium, barium by the anion exchangers Amberlite CG-400 or Dowex Ag 1×8 with 0.25M HNO3 in ethanol-methanol mixture as eluent in the apparatus specially constructed for this purpose. Determination of90Sr was done on the low-level gas-flow β-counter and by Cherenkow counting on the liquid-scintillation counter few hours after the separation. It was shown that this procedure might be successfully applied for rapid determination of90Sr in soil samples and other natural samples in a timesaving manner.  相似文献   

13.
Technetium (99mTc), a decay product of molybdenum (99Mo), is employed as radioisotope in nuclear medicine. Several practical devices known as generators are commercially available which enable the user to separate the daughter from the parent radionuclide. The present study is focused on quality control of chromatographic technetium generator. A properly constructed generator should comply with international requirements of radionuclide purity of 90Sr/99Mo ≤ 6 × 10?8 and 89Sr/99Mo ≤ 6 × 10?7. For this purpose an analytical method was optimized to quantify radiostrontium (89Sr and 90Sr) in sodium molybdate [Na 2 99 MoO4] solution, a fission product used for 99Mo/99mTc generators. Dowex 1 × 8 and alumina were used in sequence followed by tributyl phosphate extraction for radiostrontium separation. Cerenkov measurement of 89Sr and 90Sr (through its descendent 90Y) was performed using Perkin Elmer Tricarb LSA 3170 with detection efficiency of 42 and 14 %, respectively. Since efficiency of Cerenkov counting is sensitive to presence of color, spectral index of sample was used to correct the counting efficiency. The chemical recovery for strontium was 22 % and for yttrium was 80 % as determined by inductively coupled plasma optical emission spectrometry. Lower limit of detection was found to be 6.3 and 14.4 Bq L?1 for 90Sr and 89Sr, respectively with 60 min counting time. Hence method can be applied successfully to analyze 89,90Sr in fission molybdenum used as radiopharmaceutical with a relative error of <10 %.  相似文献   

14.
Summary A relatively simple chemical separation procedure has been developed for the simultaneous determination of89Sr and 9 0Sractivities in water samples and on aerosol-filters of the Nuclear Power Plant (NPP) Paks origin. The procedure combines the cation-exchange chromatographic (Dowex 50 WX 8 resin) and solid phase extraction (EIChroM Sr.Spec?, DC18C6 crown ether) steps. The beta-radiation of radionuclides can be measured directly after the chemical separation by LSC. The activities of89Sr,90Sr and90Y are calculated from an over determined set of equations using a method of constrained optimization technique. The equations are based on LSC measurements performed in three counting windows plus the90Sr-90Y decay law. The chemical yield of strontium is determined by ICP-AES. The lowest limits of detectable activity, for the measurement time of 600 minutes, are 30 mBq/sample and 18 mBq/sample for89Sr and90Sr, respectively.  相似文献   

15.
Procedures for the separation and determination of90Sr in liquid samples, with cation and anion exchangers have been described. Strontium, yttrium and other cations bind to the cation exchanger and are eluted from the column by means of nitric acid. Separation of yttrium and strontium from other cations is carried out on columns filled with strong base anion exchangers in nitrate form with alcoholic solutions of nitric acid. This separation method enables the determination of90Sr through yttrium on a low-level gas flow α, β-counter, as well as through strontium on a lowlevel liquid scintillation counter by means of Cherenkov counting. Such procedures have been tested by the determination of90Sr in water, wine, medium radioactive liquid waste samples, milk and clover samples. For comparison, the determination has also been carried out by the standard method. It has been showed that the developed procedures might produce a high efficiency in strontium separation and a satisfactory accuracy of determination.  相似文献   

16.
A new method for the determination of radiostrontium in seawater samples has been developed at the Savannah River National Laboratory (SRNL) that allows rapid pre-concentration and separation of strontium and yttrium isotopes in seawater samples for measurement. The new SRNL method employs a novel and effective pre-concentration step that utilizes a blend of calcium phosphate with iron hydroxide to collect both strontium and yttrium rapidly from the seawater matrix with enhanced chemical yields. The pre-concentration steps, in combination with rapid Sr Resin and DGA Resin cartridge separation options using vacuum box technology, allow seawater samples up to 10 L to be analyzed. The total 89Sr + 90Sr activity may be determined by gas flow proportional counting and recounted after ingrowth of 90Y to differentiate 89Sr from 90Sr. Gas flow proportional counting provides a lower method detection limit than liquid scintillation or Cerenkov counting and allows simultaneous counting of samples. Simultaneous counting allows for longer count times and lower method detection limits without handling very large aliquots of seawater. Seawater samples up to 6 L may be analyzed using Sr Resin for 89Sr and 90Sr with a minimum detectable activity (MDA) of 1–10 mBq/L, depending on count times. Seawater samples up to 10 L may be analyzed for 90Sr using a DGA Resin method via collection and purification of 90Y only. If 89Sr and other fission products are present, then 91Y (beta energy 1.55 MeV, 58.5 day half-life) is also likely to be present. 91Y interferes with attempts to collect 90Y directly from the seawater sample without initial purification of Sr isotopes first and 90Y ingrowth. The DGA Resin option can be used to determine 90Sr, and if 91Y is also present, an ingrowth option with using DGA Resin again to collect 90Y can be performed. An MDA for 90Sr of <1 mBq/L for an 8 h count may be obtained using 10 L seawater sample aliquots.  相似文献   

17.
A method in which90Y the daughter product of90Sr decay is extracted by tributyl phosphate (TBP) from ashed powdered milk is described. The90Y which is in equilibrium with90Sr is back-extracted into the aqueous phase and coprecipitated with milligram amounts of ferric hydroxide. The proposed procedure makes it possible to obtain thin planar sources convenient for low level gas counters. The overall detection efficiency of 45.5% for90Y (including chemical recovery of yttrium) was achieved. The detection limit for 200 g powdered milk samples and 10 000 s counting time was 0.065 Bq·kg–1. The concentration of90Sr in three-year old samples (after Chernobyl accident) ranged from 0.81 to 1.31 Bq·kg–1.  相似文献   

18.
A rapid method for the extraction and determination of 90Sr in natural water, plant and sediment samples was developed using extraction chromatography and dynamic reaction cell ICP–MS, with O2 as a reaction gas. While isobaric interference from the stable isotope 90Zr was efficiently removed by this method, interferences produced from in-cell reactions with Fe+ and Ni+ required suppression by tuneable bandpass, and in sediments, additional chromatographic separation. Method detection limits were 0.1 pg g−1 (0.5 Bq g−1), 0.04 pg g−1(0.2 Bq g−1), and 3 pg L−1 (5 Bq L−1) for sediments, plant and water samples, respectively, and 90Sr concentrations determined by ICP–MS were in good agreement with activities determined by Cerenkov counting and with certified reference values. While mass spectrometric determination does not rival detection limits achievable by radiometric counting, radiometric determination of 90Sr, a pure beta-emitter, is hindered by long analysis times (several weeks); the comparatively fast analysis achieved via ICP–MS enables same-day preparation and analysis of samples, making this an important technique for the environmental monitoring of areas contaminated by radioactivity.  相似文献   

19.
A relatively simple method has been developed for the determination of210Pb via its -emitting daughter,210Bi. Lead-210 was separated from interfering elements as lead sulphate. The precipitate was dissolved in an alkaline solution of EDTA and the Cerenkov signal produced by the build-up of210Bi was counted 30 days after storage using tritium channel of a liquid scintillation counter. Cerenkov counting efficiency was found to be approximately 20%. A lower limit of detection of 5.1 mBq/1 (based on 3 of the background with 500 minute counting time) was achieved. Chemical recoveries in the range of 70–100% were determined gravimetrically. Interference associated with currently used methods is avoided. Data from from both spiked samples and natural samples are presented.  相似文献   

20.
Radiotracer batch ion‐exchange experiments were employed to investigate the uptake of 90Sr and 137Cs radioisotopes by various cation‐exchanged forms of a 30% cross‐linked macroporous 1‐vinyl‐2‐pyrrolidone–divinylbenzene cation‐exchange resin with 1.37 ml g?1 pore volume, 0.0232 µm pore diameter and 271.2 m2 g?1 surface area. The uptake of 90Sr and 137Cs was determined by taking liquid aliquots at various time intervals from solutions over solids. The volume‐to‐solid ratio was kept at 200. The results of kinetic experiments for the carrier‐free 90Sr and 137Cs were evident in all cationic forms of the resin. The percentage uptake and distribution coefficient Kd values with carrier (0.005 M SrCl2 and 0.01 M CsCl) concentrations were also determined, and the best results were obtained from the Li+ and H+ forms of the resin. Cerenkov counting (β?‐counting) was used to observe the initial and final radioactivity in the liquid phase. All the experiments were carried out at room temperature and the radioactivity in each case was corrected for the background counts. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号