首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A fullerene-C60-modified glassy carbon electrode (GCE) is used for the simultaneous determination of adenosine and guanosine by differential pulse voltammetry. Compared to a bare glassy carbon electrode, the modified electrode exhibits an apparent shift of the oxidation potentials in the cathodic direction and a marked enhancement in the voltammetric peak current response for both the biomolecules. Linear calibration curves are obtained over the concentration range 0.5 μM-1.0 mM in 0.1 M phosphate buffer solution at pH 7.2 with a detection limit of 3.02 × 10−7 M and 1.45 × 10−7 M for individual determination of adenosine and guanosine, respectively. The interference studies showed that the fullerene-C60-modified glassy carbon electrode exhibited excellent selectivity in the presence of hypoxanthine, xanthine, uric acid and ascorbic acid. The proposed procedure was successfully applied to detect adenosine and guanosine in human blood plasma and urine, without any preliminary pre-treatment.  相似文献   

2.
Fosamprenavir is a pro-drug of the antiretroviral protease inhibitor amprenavir and is oxidizable at solid electrodes. The anodic oxidation behavior of fosamprenavir was investigated using cyclic and linear sweep voltammetry at boron-doped diamond and glassy carbon electrodes. In cyclic voltammetry, depending on pH values, fosamprenavir showed one sharp irreversible oxidation peak or wave depending on the working electrode. The mechanism of the oxidation process was discussed. The voltammetric study of some model compounds allowed elucidation of the possible oxidation mechanism of fosamprenavir. The aim of this study was to determine fosamprenavir levels in pharmaceutical formulations and biological samples by means of electrochemical methods. Using the sharp oxidation response, two voltammetric methods were described for the determination of fosamprenavir by differential pulse and square-wave voltammetry at the boron-doped diamond and glassy carbon electrodes. These two voltammetric techniques are 0.1 M H2SO4 and phosphate buffer at pH 2.0 which allow quantitation over a 4 × 10−6 to 8 × 10−5 M range using boron-doped diamond and a 1 × 10−5 to 1 × 10−4 M range using glassy carbon electrodes, respectively, in supporting electrolyte. All necessary validation parameters were investigated and calculated. These methods were successfully applied for the analysis of fosamprenavir pharmaceutical dosage forms, human serum and urine samples. The standard addition method was used in biological media using boron-doped diamond electrode. No electroactive interferences from the tablet excipients or endogenous substances from biological material were found. The results were statistically compared with those obtained through an established HPLC-UV technique; no significant differences were found between the voltammetric and HPLC methods.  相似文献   

3.
Nefazodone, an antidepressant was electrochemically studied in various buffer systems and at different pH using glassy carbon electrode. Nefazodone was electrochemically oxidized at all pH values. According to the linear relation between the peak current and the nefazodone concentration differential pulse (DPV) and square wave (SWV) voltammetric methods for its quantitative determination in pharmaceuticals and human serum were developed. For analytical purposes, a very well resolved diffusion controlled voltammetric peak was obtained in 0.1 M H2SO4 at 0.99 and 1.03 V for DPV and SWV techniques, respectively. The linear response was obtained in the ranges of 8×10−7 to 6×10−4 M with a detection limit of 2.1×10−7 M for DPV and 1.17×10−7 M for SWV techniques. The repeatability and reproducibility of the methods were within 1.03, 0.81% relative standard deviations (R.S.D.) for peak currents and 0.40, 0.20% R.S.D. for peak potentials, for DPV and SWV, respectively. Precision and accuracy of the developed method was checked by recovery studies. The proposed methods were successfully applied to the individual tablet dosage form and human serum.  相似文献   

4.
The electrochemical properties of valacyclovir, an antiviral drug, were investigated in pH range 1.8-12.0 by cyclic, differential pulse and square-wave voltammetry. The drug was irreversibly oxidized at a glassy carbon electrode in one or two oxidation steps, which are pH-dependent. For analytical purposes, a very resolved diffusion controlled voltammetric peak was obtained in Britton-Robinson buffer at pH 10.0 using differential pulse and square-wave modes. Limits of detection were 1.04 × 10−7 and 4.60 × 10−8 M for differential pulse and square-wave voltammetry, respectively. The applicability to direct assays of tablets, spiked human serum and simulated gastric fluid, was described.  相似文献   

5.
The influence of the boron-doping levels in boron-doped diamond film electrodes on the electrochemical response of nitrofurantoin (NFT) and the development of an electroanalytical procedure for NFT determination were investigated. The investigations were carried out using the techniques of cyclic voltammetry and square wave voltammetry on diamond film electrodes with different boron-doping levels (i.e., 5000, 10,000 and 20,000 mg L−1). The level of boron-doping in the diamond film electrodes influenced the electrochemical reduction of NFT. The appropriate cyclic voltammetric response of NFT was obtained with Britton-Robinson buffer at pH 4 and for diamond films doped with 10,000 and 20,000 mg L−1 of boron. These two films were selected for the development of the electroanalytical procedure. The use of square wave voltammetry with the optimized parameters demonstrated a good linear relationship between the peak current and the NFT concentration for a wide range of concentration. The lower limit of detection for the electrodes doped with 10,000 and 20,000 mg L−1 of boron were 2.69 × 10−8 mol L−1 (6.40 μg L−1) and 8.15 × 10−9 mol L−1 (1.94 μg L−1), respectively, while the lower limits of quantification were 8.96 × 10−8 mol L−1 (21.33 μg L−1) and 2.72 × 10−8 mol L−1 (6.47 μg L−1), respectively. The applicability of the proposed procedure was tested using a commercial pharmaceutical formulation of NFT, and the results were compared with the procedure recommended by the British Pharmacopeia. The proposed procedure was sensitive, accurate and precise for analysis of NFT and did not require complex preparations or renovations of the electrode surface. This presents the advantage of eliminating mercury waste and minimizing the adsorptive problems related to the use of other electrodic solid surfaces.  相似文献   

6.
Liu AL  Zhang SB  Chen W  Huang LY  Lin XH  Xia XH 《Talanta》2008,77(1):314-318
The electrochemical behavior of isorhamnetin (ISO) at a glassy carbon electrode was studied in a phosphate buffer solution (PBS) of pH 4.0 by cyclic voltammetry (CV) and differential pulse voltammetric method (DPV). A well-defined redox wave of ISO involving one electrons and one proton appeared. The electrode reaction is a reactant weak adsorption-controlled process with a charge transfer coefficient (α) of 0.586. Based on the understanding of the electrochemical process of ISO at the glassy carbon electrode, analysis of ISO can be realized. Under optimal conditions, the oxidation peak current showed linear dependence on the concentration of ISO in the range of 1.0 × 10−8 to 4.0 × 10−7 M and 1.0 × 10−6 to 1.0 × 10−5 M. The detection limit is 5.0 × 10−9 M. This method has been successfully applied to the detection of ISO in tablets.  相似文献   

7.
A novel electrochemical methods namely standard free anodic stripping voltammetry and anodic stripping voltammetric titration are proposed for determination of dissolved sulfide concentration. 2Ag+ + S2− → Ag2S reaction is used to provide the information. The anodic stripping voltammetric response of unreacted silver-ions at the glassy carbon electrode is used as analytical signal. Results reliability and accuracy are confirmed by analysis of model solutions, spiked natural and tap waters and recovery study, with a recovery of 100 ± 5% (n = 7) obtained. The approaches show the detection limit (3σblank) of 2-5 × 10−10 mol L−1 and the relative standard deviation of 2-5% for repeated measurements.  相似文献   

8.
Keliana D. Santos 《Talanta》2010,80(5):1999-109
A boron-doped diamond (BDD) electrode was used for the electroanalytical determination of estriol hormone in a pharmaceutical product and a urine sample taken during pregnancy by square-wave voltammetry. The optimized experimental conditions were: (1) a supporting electrolyte solution of NaOH at a pH of 12.0, and (2) a frequency of 20 Hz, a pulse height of 30 mV and a scan increment of 2 mV (for the square-wave parameters). The analytical curve was linear in the concentration range of 2.0 × 10−7 to 2.0 × 10−5 mol L−1 (r = 0.9994), with a detection limit of 1.7 × 10−7 mol L−1 and quantification limit of 8.5 × 10−7 mol L−1. Recoveries of estriol were in the range of 98.6-101.0%, for the pharmaceutical sample, and 100.2-103.4% for the urine sample, indicating no significant matrix interference effects on the analytical results. The accuracy of the electroanalytical methodology proposed was compared to that of the radioimmunoassay method. The values for the relative error between the proposed and standard methods were −7.29% for the determination of estriol in the commercial product and −4.98% in a urine sample taken during pregnancy. The results obtained suggest a reliable and interesting alternative method for electroanalytical determination of estriol in pharmaceutical products and urine samples taken during pregnancy using a boron-doped diamond electrode.  相似文献   

9.
Farghaly OA 《Talanta》2004,63(2):497-501
A square wave adsorptive stripping voltammetric (SWAdSV) method for the indirect determination of trace amounts of magnesium with thiopentone sodium (TPS) as an electroactive ligand, at carbon paste mercury film electrode (CP-MFE) is proposed. It is observed that the increase of the square wave voltammetric cathodic peak current of TPS, under alkaline conditions, is linear with the increase of Mg concentration. Under optimum experimental conditions viz.; pH 10.75, 3×10−5 M TPS and 0.05 M phosphate buffer (Na2HPO4-NaH2PO4), a linear relation in the range 6×10−9 to 9×10−8 M Mg2+ (0.14-2.16 ppb), at 60 s deposition time, is obtained. The detection limit of Mg2+ is 0.14 ppb for 60 s deposition time with the relative standard deviation is 0.5% (n=5). The proposed method was successfully applied to the determination of magnesium in urine and tap water samples with satisfactory results. The data obtained are compared with the standard flame atomic absorption spectrophotometric method (FAAS).  相似文献   

10.
The electrochemical behaviour of nandrolone is investigated by cyclic, differential pulse and square-wave voltammetry in phosphate buffer system at fullerene-C60-modified electrode. The modified electrode shows an excellent electrocatalytic activity towards the oxidation of nandrolone resulting in a marked lowering in the peak potential and considerable improvement of the peak current as compared to the electrochemical activity at the bare glassy carbon electrode. The oxidation process is shown to be irreversible and diffusion-controlled. A linear range of 50 μM to 0.1 nM is obtained along with a detection limit and sensitivity of 0.42 nM and 0.358 nA nM−1, respectively, in square-wave voltammetric technique. A diffusion coefficient of 4.13 × 10−8 cm2 s−1 was found for nandrolone using chronoamperometry. The effect of interferents, stability and reproducibility of the proposed method were also studied. The described method was successfully employed for the determination of nandrolone in human serum and urine samples. A cross-validation of observed results by GC-MS indicates that the results are in good agreement with each other.  相似文献   

11.
The electrochemical detection of hexavalent chromium species was investigated. It was found that Cr(VI) can undergo chemically irreversible reduction in acidic solutions at gold, glassy carbon and boron-doped diamond electrodes. The process was found to be diffusionally controlled at all three electrodes studied. The response obtained at a gold electrode towards the reduction of chromium(VI) produced an electrochemically reversible wave in contrast to those recorded at glassy carbon and boron-doped diamond electrodes. The analytical response of the hexavalent species was studied at gold electrodes in the presence of common environmental interferences: Ni2+, Cu2+, Fe3+, Cr3+ and Triton X-100 (surfactant), with an LoD of 4.3 μM obtained in the presence of 5 mM Cr(III).  相似文献   

12.
The voltammetric behaviour of Imatinib (STI 571) and its main metabolite (N-demethylated piperazine derivative) were studied by square-wave techniques, resulting in to two methods for their determination in aqueous and urine samples at pH 2. The application of the square-wave (SW) without the adsorptive accumulation and voltammetric stripping (AdSV) exhibit a peak at a reduction potential of −0.70 V for an accumulation potential of −0.45 V. The sensitivity was higher for the stripping technique because a signal four times higher than that provided by the square-wave method without the previous accumulation was obtained. Due to the fact that Imatinib and its metabolite show the same voltammetric reduction process, some experiments were performed in order to compare the voltammetric response of Imatinib and its main metabolite in a similar ratio than that of the therapeutic concentration. The calibration curve for Imatinib in urine was linear in the range from 1.9 × 10−8 to 1.9 × 10−6 M in stripping mode with an accumulation time (tacc) of 10 s. The relative standard deviations obtained for concentration levels of Imatinib as low as 2.0 × 10−7 M for square-wave was 2.17% (n = 9) and for stripping square-wave was 2.65% (n = 9) in the same day. The limits of detection for square-wave and stripping square-wave were 5.55 × 10−9 and 5.19 × 10−9 M, respectively. Thus, the presented method are straightforward, rapid and sensitive and has been applied to the determination of Imatinib and its main metabolite altogether in urine samples from real patients.  相似文献   

13.
Golcu A  Dogan B  Ozkan SA 《Talanta》2005,67(4):703-712
The voltammetric behavior of cefixime was studied using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. The oxidation of cefixime was irreversible and exhibited diffusion controlled process depending on pH. The oxidation mechanism was proposed and discussed. Different parameters were tested to optimize the conditions for the determination of cefixime. The dependence of current intensities and potentials on pH, concentration, scan rate, nature of the buffer was investigated. According to the linear relationship between the peak current and the concentration, differential pulse (DPV) and square wave (SWV) voltammetric methods for cefixime assay in pharmaceutical dosage forms and biological fluids were developed. For the determination of cefixime were proposed in acetate buffer at pH 4.5, which allows quantitation over the 6 × 10−6-2 × 10−4 M range in supporting electrolyte and spiked serum sample; 8 × 10−6-2 × 10−4 M range in urine sample; 6 × 10−6-1 × 10−4 M range in breast milk samples for both techniques. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and in the biological samples, respectively.  相似文献   

14.
Qu F  Shi A  Yang M  Jiang J  Shen G  Yu R 《Analytica chimica acta》2007,605(1):28-33
Prussian blue nanowire array (PBNWA) was prepared via electrochemical deposition with polycarbonate membrane template for effective modification of glassy carbon electrode. The PBNWA electrode thus obtained was demonstrated to have high-catalytic activity for the electrochemical reduction of hydrogen peroxide in neutral media. This enabled the PBNWA electrode to show rapid response to H2O2 at a low potential of −0.1 V over a wide range of concentrations from 1 × 10−7 M to 5 × 10−2 M with a high sensitivity of 183 μA mM−1 cm−2. Such a low-working potential also substantially improved the selectivity of the PBNWA electrode against most electroactive species such as ascorbic acid and uric acid in physiological media. A detection limit of 5 × 10−8 M was obtained using the PBNWA electrode for H2O2, which compared favorably with most electroanalysis procedures for H2O2. A biosensor toward glucose was then constructed with the PBNWA electrode as the basic electrode by crosslinking glucose oxidase (GOx). The glucose biosensor allowed rapid, selective and sensitive determination of glucose at −0.1 V. The amperometric response exhibited a linear correlation to glucose concentration through an expanded range from 2 × 10−6 M to 1 × 10−2 M, and the response time and detection limit were determined to be 3 s and 1 μM, respectively.  相似文献   

15.
A simple and highly selective electrochemical method was developed for the single or simultaneous determination of paracetamol (N-acetyl-p-aminophenol, acetaminophen) and caffeine (3,7-dihydro-1,3,7-trimethyl-1H-purine-2,6-dione) in aqueous media (acetate buffer, pH 4.5) on a boron-doped diamond (BDD) electrode using square wave voltammetry (SWV) or differential pulse voltammetry (DPV). Using DPV with the cathodically pre-treated BDD electrode, a separation of about 550 mV between the peak oxidation potentials of paracetamol and caffeine present in binary mixtures was obtained. The calibration curves for the simultaneous determination of paracetamol and caffeine showed an excellent linear response, ranging from 5.0 × 10−7 mol L−1 to 8.3 × 10−5 mol L−1 for both compounds. The detection limits for the simultaneous determination of paracetamol and caffeine were 4.9 × 10−7 mol L−1 and 3.5 × 10−8 mol L−1, respectively. The proposed method was successfully applied in the simultaneous determination of paracetamol and caffeine in several pharmaceutical formulations (tablets), with results similar to those obtained using a high-performance liquid chromatography method (at 95% confidence level).  相似文献   

16.
The oxidative behaviour of pimozide was studied in hydroalcoholic media (10+90 methanol-H2O, pH range 2-7.5) at carbon based electrodes. Pimozide was irreversibly oxidized at high positive potentials, resulting in the formation of a couple with a reduction and re-oxidation peak at much lower potentials. The response was evaluated with respect to pH, scan rate, addition of surfactant and other variables. Using differential pulse voltammetry (DPV), the drug yielded a well-defined voltammetric response in Britton-Robinson buffer, pH 2.1 at +1.1 V (versus Ag/AgCl) on glassy carbon electrode. The process could be used to determine pimozide concentrations in the range 8×10−7-1×10−4 M. Applicability to tablets and human serum analysis was illustrated. Furthermore, a high-performance liquid chromatographic method with electrochemical detection (HPLC-EC) was developed, which allowed pimozide to be detected down to a level of 2.7×10−10 M (0.25 ppb).  相似文献   

17.
Gazy AA 《Talanta》2004,62(3):575-582
The adsorptive and electrochemical behavior of amlodipine besylate on a glassy carbon electrode were explored in Britton-Robinson buffer solution by using cyclic and square-wave voltammetry. Cyclic voltammetric studies indicated the oxidation of amlodipine besylate at the electrode surface through a single two-electron irreversible step and fundamentally controlled by adsorption. The solution conditions and instrumental parameters were optimized for the determination of the authentic drug by adsorptive square-wave stripping voltammetry. Amlodipine besylate gave a sensitive adsorptive oxidation peak at 0.510 V (versus Ag/AgCl). The oxidation peak was used to determine amlodipine besylate in range 4.0×10−8 to 2.0×10−6 with a detection limit of 1.4×10−8 M. The procedure was successfully applied for the assay of amlodipine besylate in tablets (Norvasc)®. The percentage recoveries were in agreement with those obtained by the reference method. Applicability to assay the drug in urine and serum samples was illustrated. The mean percentage recoveries were 96.31±1.18 and 96.98±1.17, respectively. The proposd method used for monotoring clinically relevant concntrations of drug in human urine and serum.  相似文献   

18.
Uslu B  Topal BD  Ozkan SA 《Talanta》2008,74(5):1191-1200
The anodic behavior and determination of pefloxacin on boron-doped diamond and glassy carbon electrodes were investigated using cyclic, linear sweep, differential pulse and square wave voltammetric techniques. In cyclic voltammetry, pefloxacin shows one main irreversible oxidation peak and additional one irreversible ill-defined wave depending on pH values for both electrodes. The results indicate that the process of pefloxacin is irreversible and diffusion controlled on boron-doped diamond electrode and irreversible but adsorption controlled on glassy carbon electrode. The peak current is found to be linear over the range of concentration 2 × 10−6 to 2 × 10−4 M in 0.5 M H2SO4 at about +1.20 V (versus Ag/AgCl) for differential pulse and square wave voltammetric technique using boron-doped diamond electrode. The repeatability, reproducibility, precision and accuracy of the methods in all media were investigated. Selectivity, precision and accuracy of the developed methods were also checked by recovery studies. The procedures were successfully applied to the determination of the drug in pharmaceutical dosage forms and humans serum samples with good recovery results. No electroactive interferences from the excipients and endogenous substances were found in the pharmaceutical dosage forms and biological samples, respectively.  相似文献   

19.
Barek J  Jandová K  Pecková K  Zima J 《Talanta》2007,74(3):421-426
Voltammetric behavior of 2-aminobiphenyl, 3-aminobiphenyl, and 4-aminobiphenyl at a boron-doped nanocrystalline diamond film electrode was investigated using cyclic voltammetry and differential pulse voltammetry. Optimum conditions have been found for the determination of those genotoxic substances by differential pulse voltammetry at the above given electrode in the concentration range of 2 × 10−7 to 1 × 10−5 mol/L.  相似文献   

20.
In this study, an hybrid material obtained by the intercalation of a gemini surfactant between the layers of smectite-type clay, was fully characterized by X-ray diffraction (XRD), infrared spectroscopy (FTIR) and N2 adsorption-desorption experiments (BET method). To ascertain the intercalation process of the starting clay by the dimeric surfactant, the permselectivity and ion exchange properties of the organoclay were investigated by ion exchange voltammetry using [Fe(CN)6]3− and [Ru(NH3)6]3+ as redox probes, by the means of a clay film-modified electrode. Due to its organophilic character, the surfactant-intercalated complex was evaluated as electrode modifier for the accumulation of methylparathion (MP) pesticide. The electroanalytical procedure involves two steps: preconcentration under open-circuit followed by voltammetric detection by square wave voltammetry: the peak current obtained (after 5 min preconcentration in 4 × 10−5 mol L−1 MP) on a glassy carbon electrode coated by a thin film of the modified clay was more than five times higher than that exhibited by the same substrate covered by a film of the pristine clay. This opens the way to the development of a sensitive method for the detection of the pesticide. Many parameters that can affect the stripping response (surfactant loading of the hybrid material, film composition, pH of the detection medium, preconcentration time, electrolysis potential and duration as well as some other instrumental parameters) were systematically investigated to optimize the sensitivity of the organoclay-modified electrode. After optimization, a linear calibration curve for MP was obtained in the concentration range from 4 × 10−7 to 8.5 × 10−6 mol L−1 in acetate buffer (pH 5), with a detection limit of 7 × 10−8 mol L−1 (signal-to-noise ratio equal to 3). The interference effect of various inorganic ions likely to influence the stripping determination of the pesticide was also examined, and the described method was applied to spring water analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号