首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 0 毫秒
1.
Jianwen Wang  Yifeng Tu 《Talanta》2009,77(4):1454-4466
A novel disposable third-generation hydrogen peroxide (H2O2) biosensor based on horseradish peroxidase (HRP) immobilized on the gold nanoparticles (AuNPs) electrodeposited indium tin oxide (ITO) electrode is investigated. The AuNPs deposited on ITO electrode were characterized by UV-vis, SEM, and electrochemical methods. The AuNPs attached on the ITO electrode surface with quasi-spherical shape and the average size of diameters was about 25 nm with a quite symmetric distribution. The direct electron chemistry of HRP was realized, and the biosensor exhibited excellent performances for the reduction of H2O2. The amperometric response to H2O2 shows a linear relation in the range from 8.0 μmol L−1 to 3.0 mmol L−1 and a detection limit of 2 μmol L−1 (S/N = 3). The value of HRP immobilized on the electrode surface was found to be 0.4 mmol L−1. The biosensor indicates excellent reproducibility, high selectivity and long-term stability.  相似文献   

2.
A novel cobalt-tetraphenylporphyrin/reduced graphene oxide (CoTPP/RGO) nanocomposite was prepared by a π–π stacking interaction and characterized by ultraviolet–visible absorption spectroscopy (UV–vis), Fourier transform infrared spectroscopy (FTIR) and electrochemical impedance spectroscopy (EIS). The CoTPP/RGO nanocomposite exhibited high electrocatalytic activity both for oxidation and reduction of H2O2. The current response was linear to H2O2 concentration with the concentration range from 1.0 × 10−7 to 2.4 × 10−3 mol L−1 (R = 0.998) at the reductive potential of −0.20 V and from 1.0 × 10−7 to 4.6 × 10−4 mol L−1 (R = 0.996) at the oxidative potential of +0.50 V. The H2O2 biosensor showed good anti-interfering ability towards oxidative interferences at the oxidative potential of +0.50 V and good anti-interfering ability towards reductive interferences at the reductive potential of −0.20 V.  相似文献   

3.
Xu Y  Wang F  Chen X  Hu S 《Talanta》2006,70(3):651-655
The heme-protein including myoglobin (Mb), hemoglobin (Hb) and horseradish peroxidase (HRP) were immobilized on normal graphite electrode by using N,N-dimethylformamide (DMF). The proteins undergo direct electron-transfer reactions. The current is linearly dependent on the scan rate, indicating that the direct electrochemistry of heme-protein in that case is a surface-controlled electrode process. The E°s are linearly dependent on solution pH (redox-Bohr effect), indicating that the electron transfer was proton-coupled. Ultraviolet-visible (UV-vis) and reflection-absorption infrared (RAIR) spectra suggest that the conformation of proteins in the presence of DMF are little different from that proteins alone the conformation changes reversibly in the range of pH 3.0-10.0. The catalytic activity of proteins were examined by hydrogen peroxide and nitrite.  相似文献   

4.
采用酸性溶胶法在碳纳米管上负载纳米TiO2颗粒,并制备了CNT-TiO2薄膜固定辣根过氧化物酶的生物传感器。研究了该生物传感器在磷酸盐缓冲溶液中对H2O2的电催化氧化作用及实验条件的影响。结果表明该生物传感器对H2O2表现出良好的电催化性能,在最佳实验条件下,对H2O2检测的线性范围为:4.2×10-7mol/L~3.2×10-3mol/L。检出限为:7.22×10-8mol/L。  相似文献   

5.
A new kind of magnetic dextran microsphere (MDMS) with uniform shape and narrow diameter distribution has been prepared from magnetic iron nanoparticles and dextran. Horseradish peroxidase (HRP) was successfully immobilized on the surface of an MDMS-modified glassy-carbon electrode (GCE), and the immobilized HRP displayed excellent electrocatalytic activity in the reduction of H2O2 in the presence of the mediator hydroquinone (HQ). The effects of experimental variables such as the concentration of HQ, solution pH, and the working potential were investigated for optimum analytical performance. This biosensor had a fast response to H2O2 of less than 10 s and an excellent linear relationship was obtained in the concentration range 0.20 μmol L−1–0.68 mmol L−1, with a detection limit of 0.078 μmol L−1 (S/N = 3) under the optimum conditions. The response showed Michaelis–Menten behavior at larger H2O2 concentrations, and the apparent Michaelis–Menten constant was estimated to be 1.38 mmol L−1. Moreover, the selectivity, stability, and reproducibility of the biosensor were evaluated, with satisfactory results. Figure Amperometric response of the biosensor to successive additions of H2O2 and the plot of amperometric response vs. H2O2 concentration  相似文献   

6.
Direct electron transfer was found to be greatly facilitated for horseradish peroxidase (HRP) in a didodecyldimethylammonium bromide (DDAB) biomembrane-like film at a pyrolytic graphite (PG) electrode involving the FeIII FeII couple. The heterogeneous electron transfer rate constant ks was fitted as 9.0 s−1 using the non-linear regression analysis of the square wave voltammograms at a series of frequencies and pulse heights. The pH dependence of the formal potential for HRP in DDAB film at medium pH environments suggested one-proton transfer coupled with a one-electron transfer reaction. Scanning electron microscopy (SEM) showed different film morphology for HRP and HRP---DDAB films. UV–vis and reflectance absorption infrared (RAIR) spectra inferred that the heme state of HRP in DDAB film was similar to that in its native state. Circular dichroism (CD) results indicated slight perturbation of DDAB on the second structure of HRP. Thus, the embedded HRP in the biomembrane-like DDAB film showed nearly native structural properties and improved electrochemical characteristics. This has potential value for the basic and applied bioelectrochemistry of enzymes.  相似文献   

7.
Xinhuang Kang  Jun Wang  Hong Wu 《Talanta》2009,78(1):120-194
A hybrid organic-inorganic nanocomposite film of chitosan/sol-gel/multi-walled carbon nanotubes was constructed for the immobilization of horseradish peroxidase (HRP). This film was characterized by scanning electron microscopy. Direct electron transfer (DET) and bioelectrocatalysis of HRP incorporated into the composite film were investigated. The results indicate that the film can provide a favorable microenvironment for HRP to perform DET on the surface of glassy carbon electrodes with a pair of quasi-reversible redox waves and to retain its bioelectrocatalytic activity toward H2O2.  相似文献   

8.
A novel electrochemical H2O2 biosensor was constructed by embedding horseradish peroxide (HRP) in a 1-butyl-3-methylimidazolium tetrafluoroborate doped DNA network casting on a gold electrode. The HRP entrapped in the composite system displayed good electrocatalytic response to the reduction of H2O2. The composite system could provide both a biocompatible microenvironment for enzymes to keep their good bioactivity and an effective pathway of electron transfer between the redox center of enzymes, H2O2 and the electrode surface. Voltammetric and time-based amperometric techniques were applied to characterize the properties of the biosensor. The effects of pH and potential on the amperometric response to H2O2 were studied. The biosensor can achieve 95% of the steady-state current within 2 s response to H2O2. The detection limit of the biosensor was 3.5 μM, and linear range was from 0.01 to 7.4 mM. Moreover, the biosensor exhibited good sensitivity and stability. The film can also be readily used as an immobilization matrix to entrap other enzymes to prepare other similar biosensors. Figure Horseradish peroxidase (HRP) embedded in a 1-butyl-3-methylimidazolium tetrafluoroborate (BMIM·BF 4 ) doped DNA network can be used to fabricate a HRP sensor for the determination of H2O2  相似文献   

9.
Feng Li 《Talanta》2009,77(4):1304-1308
A simple and reliable one-pot approach was established for the development of a novel hydrogen peroxide (H2O2) biosensor based on in situ covalent immobilization of horseradish peroxidase (HRP) into biocompatible material through polysaccharide-incorporated sol-gel process. Siloxane with epoxide ring and trimethoxy anchor groups was applied as the bifunctional cross-linker and the inorganic resource for organic-inorganic hybridization. The reactivity between amine groups and epoxy groups allowed the covalent incorporation of HRP and the functional biopolymer, chitosan (CS) into the inorganic polysiloxane network. Some experimental variables, such as mass ratio of siloxane to CS, pH of measuring solution and applied potential for detection were optimized. HRP covalently immobilized in the hybrid matrix possessed high electrocatalytic activity to H2O2 and provided a fast amperometric response. The linear response of the as-prepared biosensor for the determination of H2O2 ranged from 2.0 × 10−7 to 4.6 × 10−5 mol l−1 with a detection limit of 8.1 × 10−8 mol l−1. The apparent Michaelis-Menten constant was determined to be 45.18 μmol l−1. Performance of the biosensor was also evaluated with respect to possible interferences. The fabricated biosensor exhibited high reproducibility and storage stability. The ease of the one-pot covalent immobilization and the biocompatible hybrid matrix serve as a versatile platform for enzyme immobilization and biosensor fabricating.  相似文献   

10.
利用溶胶 凝胶法制备壳聚糖 二氧化硅有机无机复合杂化膜,用于对辣根过氧化酶进行固定,制得测定H2O2的电流型生物传感器。以1mmol/LK4Fe(CN)6作为电子媒介体。研究了各种因素如壳聚糖与二氧化硅的比率、pH、温度、工作电位等对传感器响应电流的影响。计时电流法测定H2O2的线性范围为2.0×10-6~6.8×10-4mol/L,检出限为8.0×10-7mol/L。测得酶催化动力学参数米氏常数Km=0 87mmol/L。用该法对实际样品进行了测定。  相似文献   

11.
Horseradish peroxidase (HRP) was immobilized into a new type of sol–gel-derived nano-sized tin oxide/gelatin composite film (SnO2 composite film) using a sol–gel film/enzyme/sol–gel film “sandwich” configuration. Direct electrochemistry and electrocatalysis of HRP incorporated into the composite films were investigated. HRP/SnO2 composite film exhibited a pair of stable and quasi-reversible cyclic voltammetric peaks for the HRP Fe(III)/HRP Fe(II) redox couple with a formal potential of about −0.25 V (vs. SCE) in a pH 6.0 phosphate buffer solution. The electron transfer between the enzyme and the underlying electrode was greatly enhanced in the microenvironment with nano-SnO2 particles and nanoporous structures. Morphologies and microstructures of the composite films and HRP/composite films were characterized with TEM, AFM. Electrochemical impedance spectroscopy (EIS) was also used to feature the HRP incorporated into composite films. FTIR and UV–Vis spectroscopy demonstrated that HRP in the composite film could retain its native secondary structure. With the advantages of organic–inorganic hybrid materials, the HRP/SnO2 composite film modified electrode displayed good stability and electrocatalytic activity to the reduction of H2O2, The apparent Michaelis-Menten constant was estimated to be 0.345 mM, indicating a high affinity of HRP entrapped into the composite film toward H2O2.  相似文献   

12.
13.
In this paper, we employ two peroxidases (horseradish peroxidase, HRP and cytochrome c peroxidase, CcP) to demonstrate their ability to retain their redox and biological functions after their immobilisation on mesoporous TiO2 and SnO2 electrodes. We will also demonstrate the use of HRP immobilised on the metal oxide electrodes for the development of reagentless optical and electrochemical biosensors for the detection of hydrogen peroxide (H2O2) with low detection limit of 0.04 and 1 μM, respectively.  相似文献   

14.
A carboxyl functionalized graphene oxide (GO-COOH) and electropolymerized ploy-l-lysine (PLLy) modified glassy carbon electrode (GCE) was fabricated and used for the construction of an electrochemical deoxyribonucleic acid (DNA) biosensor. The NH2 modified probe ssDNA sequences were immobilized on the surface of GO-COOH/PLLy/GCE by covalent linking with the formation of amide bonds, which was stable and furthur hybridized with the target ssDNA sequence. Differential pulse voltammetry (DPV) was used to monitor the hybridization events with methylene blue as electrochemical indicator, which gave a sensitive reduction peak at −0.287 V (vs. SCE). Under the optimal conditions the reduction peak current was proportional to the concentration of tlh gene sequence in the range from 1.0 × 10−12 to 1.0 × 10−6 mol L−1 with a detection limit as 1.69 × 10−13 mol L−1 (3σ). The polymerase chain reaction products of tlh gene from oyster samples were detected with satisfactory results, indicating the potential application of this electrochemical DNA sensor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号