首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

2.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

3.
A rapid and effective preconcentration method for extraction of rhodamine 6G was developed by using a dispersive liquid-liquid microextraction (DLLME) prior to UV-vis spectrophotometry. In this extraction method, a suitable mixture of acetone (disperser solvent) and chloroform (extractant solvent) was injected rapidly into a conical test tube containing aqueous solution of rhodamine 6G. Therefore, a cloudy solution was formed. After centrifugation of the cloudy solution, sedimented phase was evaporated, reconstituted with methanol and measured by UV-vis spectrophotometry. Different operating variables such as type and volume of extractant solvent, type and volume of disperser solvent, pH of the sample solution, salt concentration and extraction time were investigated. The optimized conditions (extractant solvent: 300 μL of chloroform, disperser solvent: 3 mL of acetone, pH: 8 and without salt addition) resulted in a linear calibration graph in the range of 5-900 ng mL−1 of rhodamine 6G in initial solution with R2 = 0.9988 (n = 5). The Limits of detection and quantification were 2.39 and 7.97 ng mL−1, respectively. The relative standard deviation for 50 and 250 ng mL−1 of rhodamine 6G in water were 2.88% and 1.47% (n = 5), respectively. Finally, the DLLME method was applied for determination of rhodamine 6G in different industrial waste waters.  相似文献   

4.
This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)2] anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L−1 K4[Fe(CN)6]; 0.12 mmol L−1 R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L−1 and 0.5-39.4 μg L−1 for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water.  相似文献   

5.
A new, simple, fast and high sensitive analytical method based on dispersive liquid-liquid microextraction (DLLME) followed by gas chromatography-mass spectrometry (GC-MS) for the simultaneous determination of nitro musks in surface water and wastewater samples is presented. Different parameters, such as the nature and volume of both the extraction and disperser solvents and the ionic strength and pH of the aqueous donor phase, were optimized. Under the selected conditions (injection of a mixture of 1 mL of acetone as disperser solvent and 50 μL of chloroform as extraction solvent, no salt addition and no pH adjustment) the figures of merit of the proposed DLLME-GC-MS method were evaluated. High enrichment factors, ranging between 230 and 314 depending on the target analyte, were achieved, which redound to limits of detection in the ng L−1 range (i.e., 4-33 ng L−1). The relative standard deviation (RSD) was below 5% for all the target analytes. Finally, the recoveries obtained for different water samples of diverse origin (sea, river, irrigation channel and water treatment plant) ranged between 87 and 116%, thus showing no matrix effects.  相似文献   

6.
Dispersive liquid-liquid microextraction (DLLME) technique was successfully used as a sample preparation method for graphite furnace atomic absorption spectrometry (GF AAS). In this extraction method, 500 μL methanol (disperser solvent) containing 34 μL carbon tetrachloride (extraction solvent) and 0.00010 g ammonium pyrrolidine dithiocarbamate (chelating agent) was rapidly injected by syringe into the water sample containing cadmium ions (interest analyte). Thereby, a cloudy solution formed. The cloudy state resulted from the formation of fine droplets of carbon tetrachloride, which have been dispersed, in bulk aqueous sample. At this stage, cadmium reacts with ammonium pyrrolidine dithiocarbamate, and therefore, hydrophobic complex forms which is extracted into the fine droplets of carbon tetrachloride. After centrifugation (2 min at 5000 rpm), these droplets were sedimented at the bottom of the conical test tube (25 ± 1 μL). Then a 20 μL of sedimented phase containing enriched analyte was determined by GF AAS.Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of the chelating agent have been optimized. Under the optimum conditions, the enrichment factor 125 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the rage of 2-20 ng L−1 with detection limit of 0.6 ng L−1. The relative standard deviation (R.S.D.s) for ten replicate measurements of 20 ng L−1 of cadmium was 3.5%. The relative recoveries of cadmium in tap, sea and rivers water samples at spiking level of 5 and 10 ng L−1 are 108, 95, 87 and 98%, respectively. The characteristics of the proposed method have been compared with cloud point extraction (CPE), on-line liquid-liquid extraction, single drop microextraction (SDME), on-line solid phase extraction (SPE) and co-precipitation based on bibliographic data. Therefore, DLLME combined with GF AAS is a very simple, rapid and sensitive method, which requires low volume of sample (5.00 mL).  相似文献   

7.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

8.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

9.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography with fluorescence detector was applied for the determination of alkylphenols and their short-chained ethoxylates in water samples. Development of DLLME procedure included optimisation of some important parameters such as kind and volume of extracting and dispersing solvents. Under optimised conditions 50 μL of trichloroethylene in 1.5 mL of acetone were rapidly injected into 5 mL of a water sample. After centrifuging the organic phase containing the analytes was taken for evaporation with a gentle nitrogen purge and reconstituted to 50 μL of acetonitrile. The aliquot of this solution was analysed with the use of HPLC. For octylphenol (OP) and octylphenol ethoxylates (OPEOs) linearity was satisfactory in the range 8–1000 μg L−1 and for nonylphenol (NP) and nonylphenol ethoxylates (NPEOs) linearity was in the range from 50 to about 3000 μg L−1. Limit of quantitation was 0.1 μg L−1 for OP and OPEOs and 0.3 μg L−1 for NP and NPEOs. Satisfactory recoveries between 66 and 79% were obtained for environmental samples. The results showed that DLLME is a simple, rapid and sensitive analytical method for the preconcentration of trace amounts of alkylphenols and their ethoxylates in environmental water samples.  相似文献   

10.
A novel, simple and environmentally friendly procedure for copper determination has been developed. The method is based on the formation of an ion associate of Cu(I) with 1,3,3-trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydroindol-2-ylidene)-penta-1,3-dienyl]-3H-indolium (DIDC) in the presence of chloride ions as ligand, followed by dispersive liquid-liquid microextraction (DLLME) of the formed ion associate into organic phase and UV-Vis spectrophotometric detection. The following experimental conditions were used: pH 3, 0.24 mol L− 1 chloride ions, 0.06 mmol L− 1 DIDC. The effect of the nature of the extraction solvent, auxiliary solvent and disperser solvent used was studied. A mixture of amyl acetate, tetrachloromethane, and methanol in a 1:1:3 v/v/v ratio was selected for the DLLME procedure. The absorbance of the coloured extracts at 640 nm wavelength obeys Beer's law in the range 0.020-0.090 mg L− 1 of Cu. The limit of detection calculated from a blank test (n = 10) based on 3s is 0.005 mg L− 1 of Cu. The developed procedure was applied to the analysis of water samples. The suggested DLLME is compared with two procedures previously reported from our laboratory based on (1) conventional liquid-liquid extraction, and (2) sequential injection extraction performed in a dual-valve sequential injection system. The advantages and disadvantages of each method are discussed.  相似文献   

11.
A flow solid phase extraction procedure based on biosorption of Pt(IV) and Pd(II) on Aspergillus sp. immobilized on cellulose resin Cellex-T was proposed for the separation and preconcentration of Pt and Pd before their determination by electrothermal atomic absorption spectrometry (ETAAS). The analytical conditions including sample pH, eluent type, flow rates of sample and eluent solutions were examined. The analytes were selectively retained on the biosorbent in acidic medium (pH 1) and subsequently eluted from the column with 1 mL of thiourea solution (0.25 mol L− 1 thiourea in 0.3 mol L− 1 HCl). The reproducibility of the procedure was below 5%. The limit of detection of the method was 0.020 ng mL− 1 for Pt and 0.012 ng mL− 1 for Pd. The method validation was performed by analysis of certified reference materials BCR-723 (tunnel dust) and SARM-76 (platinum ore). The developed separation procedure was applied to the determination of Pt and Pd in road dust samples by ETAAS.The applied biosorbent is characterized by high sorption capacity: 0.47 mg g− 1 for Pt and 1.24 mg g− 1 for Pd.  相似文献   

12.
Dispersive liquid-liquid microextraction (DLLME) coupled with gas chromatography-flame ionization detector (GC-FID) was developed for preconcentration and determination of some nitroaromatic compounds in wastewater samples. The effects of different variables on the extraction efficiency were studied simultaneously using experimental design. The variables of interest in the DLLME process were extraction and disperser solvent volumes, salt effect, sample volume, extraction temperature and extraction time. A Plackett-Burman design was performed for screening of variables in order to determine the significant variables affecting the extraction efficiency. Then, the significant factors were optimized by using a central composite design (CCD) and the response surface equations were derived. The optimum experimental conditions found from this statistical evaluation included: sample volume, 9 mL; extraction solvent (CCl4) volume, 20 μL; disperser solvent (methanol) volume, 0.75 mL; sodium chloride concentration, 3% (w/v); extraction temperature, 20 °C and extraction time, 2 min. Under the optimum conditions, the preconcentration factors were between 202 and 314. Limit of detections (LODs) ranged from 0.09 μg L−1 (for 2-nitrotoluene) to 0.5 μg L−1 (for 2,4-dinitrotoluene). Linear dynamic ranges (LDRs) of 0.5-300 and 1-400 μg L−1 were obtained for mononitrotoluenes (MNTs) and dinitrotoluenes (DNTs), respectively. Performance of the present method was evaluated for extraction and determination of nitroaromatic compounds in wastewater samples in the range of microgram per liter and satisfactory results were obtained (RSDs < 10.1%).  相似文献   

13.
Three preconcentration techniques including solid phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and stir-bar sorptive extraction (SBSE) have been optimized and compared for the analysis of six hypolipidaemic statin drugs (atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin) in wastewater and river water samples by high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Parameters that affect the efficiency of the different extraction methods such as solid phase material, sample pH and elution solvent in the case of SPE; the type and volume of the extracting and dispersive solvent, pH of sample, salt addition and number of extraction steps in the case of DLLME; and the stirring time, pH of sample, sample volume and salt addition for SBSE were evaluated. SPE allowed the best recoveries for most of the analytes. Pravastatin was poorly extracted by DLLME and could not be determined. SBSE was only applicable for lovastatin and simvastatin. However, despite the limitations of having poorer recovery than SPE, DLLME and SBSE offered some advantages because they are simple, require low organic solvent volumes and present low matrix effects. DLLME required less time of analysis, and for SBSE the stir-bar was re-usable. SPE, DLLME and SBSE provided method detection limits in the range of 0.04-11.2 ng L−1, 0.10-17.0 ng L−1 for 0.52-2.00 ng L−1, respectively, in real samples. To investigate and compare their applicability, SPE, DLLME and SBSE procedures were applied to the detection of statin drugs in effluent wastewater and river samples.  相似文献   

14.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

15.
Liquid-liquid extraction preconcentration technique which allows the achievement of extremely high ratio between the aqueous and organic phase was specified as semi-microextraction. A modified highly effective liquid phase semi-microextraction (LSME) procedure was developed for preconcentration and determination of ultra trace levels of inorganic antimony species in environmental waters using electrothermal atomic absorption spectrometry (ETAAS) for quantification. Antimony(III) species were selectively extracted as dithiocarbamate complexes from 100 mL aqueous phase into 250 μL xylene at pH range of 5-8. Total Sb was determined using the same extraction system over a sample acidity range of pH 0-1.2 without the need for pre-reduction of Sb(V) to Sb(III). The concentration of Sb(V) was obtained as the difference between that of total antimony and Sb(III). With an 8 min extraction an enrichment factor of 400 was achieved. The limit of detection (3 s) was 2 ng L−1 Sb. The method was not affected by the presence of up to 0.01% humic acid, 0.025 mol L−1 EDTA, 0.01 mol L−1 tartaric acid and 0.001 mol L−1 F. Recoveries of spiked Sb(III) and Sb(V) in river, tap, and sea water samples ranged from 93 to 108%. The results for total antimony concentration in the river water reference material SLRS-5 were in good agreement with the information value. The procedure was applied to the determination and quantification of dissolved antimony species in natural waters.  相似文献   

16.
In this research, we combined ionic liquid-based dispersive liquid-liquid micro-extraction (IL-based DLLME) with stopped-flow spectrofluorometry (SFS) to evaluate the concentration of aluminum in different real samples at trace level. 1-Hexylpyridinium hexafluorophosphate [Hpy][PF6] ionic liquid and 8-hydroxyquinoline (oxine), which forms a highly fluorescent complex with Al3+, were chosen as the extraction solvent and chelating agent, respectively. The hydrophobic Al-oxine complex was extracted into the [Hpy][PF6] and separated from the aqueous phase. Then, the concentration of the enriched aluminum in the sediment phase was determined by SFS. Some effective parameters that influence the SFS signals and the micro-extraction efficiency, such as the suction and sending time, the concentration of the chelating agent, pH, the amount of the ionic liquid, the type of disperser solvent and diluting agent, ionic strength, extraction time, equilibration temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and enrichment factor were 0.05 μg L−1 and 100, respectively. The relative standard deviation (RSD) for six replicate determinations of 6 μg L−1 Al was 1.7%. The calibration graph using the pre-concentration system was linear in the range of 0.06-15 μg L−1 with a correlation coefficient of 0.9989. The developed method was validated by the analysis of certified reference materials and applied successfully to the determination of aluminum in several water, fruit juice and food samples.  相似文献   

17.
Karatepe A  Soylak M  Elçi L 《Talanta》2011,85(4):1974-1979
A selective preconcentration method was described for the determination of inorganic thallium species by electrothermal atomic absorption spectrometry (ETAAS). Thallium(III) and thallium(I) as chloro and iodo complexes were selectively retained by a column containing 0.5 g of Chromosorb 105 resin and quantitatively eluted by 10 mL of pure acetone. The calibration graph was linear with a correlation coefficient of 0.997 at levels near the detection limit and up to at least 0.8 μg L−1. The detection limits for the determination of total thallium and thallium(III) employing the proposed method by ETAAS were estimated as three values of the standard deviations, 0.050 μg L−1 and 0.034 μg L−1, respectively. Verification of the accuracy was carried out by the analysis of standard reference materials (GBW 07402 soil, NIST 2710 Montana soil, GBW 07309 and GBW 07310 stream sediments). The relative errors were found to be in the range of −7.7% to +4.8%. The relative standard deviations were generally found to be below 10%. The effect of potential interfering ions on the determination was studied. The proposed method was successfully applied to the determination of total thallium in five different brand cements, soils around two cement plants and metallic zinc samples. The speciation of thallium(I) and thallium(III) was applied to synthetic solutions.  相似文献   

18.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

19.
Two liquid-phase microextraction procedures: single-drop microextraction (SDME) and dispersive liquid-liquid microextraction (DLLME), have been developed for the determination of several endocrine-disrupting phenols (EDPs) in seawaters, in combination with high-performance liquid chromatography (HPLC) with UV detection. The EDPs studied were bisphenol-A, 4-cumylphenol, 4-tertbutylphenol, 4-octylphenol and 4-n-nonylphenol. The optimized SDME method used 2.5 μL of decanol suspended at the tip of a micro-syringe immersed in 5 mL of seawater sample, and 60 min for the extraction time. The performance of the SDME is characterized for average relative recoveries of 102 ± 11%, precision values (RSD) < 9.4% (spiked level of 50 ng mL−1), and detection limits between 4 and 9 ng mL−1. The optimized DLLME method used 150 μL of a mixture acetonitrile:decanol (ratio 15.7, v/v), which is quickly added to 5 mL of seawater sample, then subjected to vortex during 4 min and centrifuged at 2000 rpm for another 5 min. The performance of the DLLME is characterized for average relative recoveries of 98.7 ± 3.7%, precision values (RSD) < 7.2% (spiked level of 20 ng mL−1), and detection limits between 0.2 and 1.6 ng mL−1. The efficiencies of both methods have also been compared with spiked real seawater samples. The DLLME method has shown to be a more efficient approach for the determination of EDPs in seawater matrices, presenting enrichment factors ranging from 123 to 275, average relative recoveries of 110 ± 11%, and precision values (RSD) < 14%, when using a real seawaters (spiked level of 3.5 ng mL−1).  相似文献   

20.
Jie Mao  Qun He  Weisheng Liu 《Talanta》2010,80(5):2093-432
An “off-on” rhodamine-based fluorescence probe for the selective signaling of Fe(III) has been designed exploiting the guest-induced structure transform mechanism. This system shows a sharp Fe(III)-selective fluorescence enhancement response in 100% aqueous system under physiological pH value and possesses high selectivity against the background of environmentally and biologically relevant metal ions including Al(III), Cd(II), Fe(II), Co(II), Cu(II), Ni(II), Zn(II), Mg(II), Ba(II), Pb(II), Na(I), and K(I). Under optimum conditions, the fluorescence intensity enhancement of this system is linearly proportional to Fe(III) concentration from 6.0 × 10−8 to 7.2 × 10−6 mol L−1 with a detection limit of 1.4 × 10−8 mol L−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号