首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study developed a headspace liquid-phase microextraction (LPME) method by using a single aqueous drop in combination with high performance liquid chromatography (HPLC)-UV detection for the determination of methamphetamine (MAP) and amphetamine (AP) in urine samples. The analytes, volatile and basic, were released from sample matrix into the headspace first, and then protonated and dissolved in an aqueous H3PO4 drop hanging in the headspace by a HPLC syringe. After extraction, this drop was directly injected into HPLC. Parameters affecting extraction efficiency were investigated and optimized. This method showed good linearity in the investigated concentration range of 1.0-1500 μg L−1, repeatability of the extraction (R.S.D. < 5%, n = 6), and low detection limits (0.3 μg L−1 for both analytes). Enrichment factors of about 400-fold and 220-fold were achieved for MAP and AP, respectively, at optimum conditions. The feasibility of the method was demonstrated by analyzing human urine samples.  相似文献   

2.
A simple, sensitive, and specific method with gas chromatography-mass spectrometry was developed for simultaneous extraction and derivatization of amphetamines (APs) and 3,4-methylenedioxyamphetamines (MDAs) in human urine by using a monolithic silica spin column. All the procedures, such as sample loading, washing, and elution were performed by centrifugation. APs and MDAs in urine were adsorbed on the monolithic silica and derivatized with propyl chloroformate in the column. Methamphetamine-d5 was used as an internal standard. The linear ranges were 0.01-5.0 μg mL−1 for methamphetamine (MA) and 3,4-methylenedioxymethamphetamine (MDMA) and 0.02-5.0 μg mL−1 for amphetamine (AP) and 3,4-methylenedioxyamphetamine (MDA) (coefficient of correlation ≧0.995). The recovery of APs and MDAs in urine was 84-94%, and the relative standard deviation of the intra- and interday reproducibility for urine samples containing 0.1, 1.0, and 4.0 μg mL−1 of APs and MDAs ranged from 1.4% to 13.6%. The lowest detection limit (signal-to-noise ratio ≧ 3) in urine was 5 ng mL−1 for MA and MDMA and 10 ng mL−1 for AP and MDA. The proposed method can be used to perform simultaneous extraction and derivatization on spin columns that have been loaded with a small quantity of solvent by using centrifugation.  相似文献   

3.
Oxidative stress has been implicated in various pathologies as well as in environmental pollutant-induced negative health outcomes. In this work we have developed an analytical method to measure oxidative stress markers namely m-, o-tyrosine, 3-chlorotyrosine, 3-nitrotyrosine, and the DNA damage marker 8-hydroxy deoxyguanosine in human urine. The method involves the base hydrolysis of the urine sample followed by solid phase extraction of target analytes using a reverse phase polymeric sorbent column prior to the HPLC-EC analysis. The recovery studies indicated that the overall method recovery for all analytes were >60%. The limit of quantification of all target analytes was <10 nM with a linear range from 2 nM to 150 μM. The applicability of this method is demonstrated by analyzing the above markers in healthy human urine (n = 10) samples.  相似文献   

4.
Single drop liquid-liquid-liquid microextraction (LLLME) combined with high performance liquid chromatography (HPLC)-UV detection was investigated for the determination of a popular drug of abuse, methamphetamine (MAP), and its major metabolite, amphetamine (AP), in urine samples. The target compounds were extracted from NaOH modified sample solution to a thin layer of organic solvent membrane, and back-extracted to an acidic acceptor drop suspended on the tip of a 50-microL HPLC syringe in the aforementioned organic layer. This syringe was also used for direct injection after extraction. Factors affecting extraction efficiency were studied. At optimal conditions, the overall enrichment factor (EF) was 500-fold for AP and 730-fold for MAP, respectively. The method exhibited a wide linear range (1.0-1500 microg/L), low detection limit (0.5 microg/L), and good repeatability (RSD<5.0%) for both analytes. The feasibility of the method was demonstrated by the analysis of human urine samples.  相似文献   

5.
A new solid-phase microextraction (SPME) procedure using an ionic liquid (IL) has been developed. Reusable IL-based SPME fiber was prepared for the first time by fixing IL through cross-linkage of IL impregnated silicone elastomer on the surface of a fused silica fiber. 1-Ethoxyethyl-3-methylimidazloium bis(trifluoromethane) sulfonylimide ([EeMim][NTf2]) ionic liquid was employed as a demonstration and the prepared fiber was applied to the forensic headspace determination of methamphetamine (MAP) and amphetamine (AP) in human urine samples. Important extraction parameters including the concentration of salt and base in sample matrix, extraction temperature and extraction time were investigated and optimized. Combined with gas chromatography/mass spectrometry (GC/MS) working in selected ion monitoring (SIM) mode, the new method showed good linearity in the range of 20–1500 μg L−1, good repeatability (RSD < 7.5% for MAP, and <11.5% for AP, n = 6), and low detection limits (0.1 μg L−1 for MAP and 0.5 μg L−1 for AP). Feasibility of the method was evaluated by analyzing human urine samples. Although IL-based SPME is still at the beginning of its development stage, the results obtained by this work showed that it is a promising simple, fast and sensitive sample preparation method.  相似文献   

6.
A new method for separation/preconcentration of trace amounts of Cr, Cu and Pb in environmental samples by magnetic solid-phase extraction (SPE) with Bismuthiol-II-immobilized magnetic nanoparticles and their determination by ICP-OES has been developed. The separation of the target analytes from the aqueous solution containing the target analytes and Bismuthiol-II-immobilized magnetic nanoparticles was simply achieved by applying external magnetic field. Optimal experimental conditions including pH, sample volume, eluent concentration and volume and co-existing ions have been studied and established. Under the optimal experimental conditions, the detection limits for Cr, Cu and Pb with enrichment factors of 96, 95 and 87 were found to be 0.043, 0.058 and 0.085 ng mL−1 and their relative standard deviations (R.S.D.s) were 3.5%, 4.6% and 3.7% (n = 5, C = 2 ng mL−1), respectively. The method was validated with certified reference material (GBW50009-88) of environmental water sample and the analytical results coincided well with the certified values. Furthermore, the method was successfully applied to the determination of target analytes in river and lake water samples. Compared with established methods, the proposed method is characterized with high enrichment factor, fast separation and low detection limits.  相似文献   

7.
Dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD) was developed for extraction and determination of chloramphenicol (CAP) and thiamphenicol (THA) in honey. In this extraction method, 1.0 mL of acetonitrile (as dispersive solvent) containing 30 μL 1,1,2,2-tetrachloroethane (as extraction solution) was rapidly injected by syringe into a 5.00-mL water sample containing the analytes, thereby forming a cloudy solution. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the nature and volume of extraction solvent and dispersive solvent, extraction time, sample solution pH, sample volume and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 3 to 2000 μg kg−1 for target analytes. The enrichment factors for CAP and THA were 68.2 and 87.9, and the limits of detection (S/N = 3) were 0.6 and 0.1 μg kg−1, respectively. The relative standard deviations (RSDs) for the extraction of 10 μg kg−1 of CAP and THA were 4.3% and 6.2% (n = 6). The main advantages of DLLME-HPLC method are simplicity of operation, rapidity, low cost, high enrichment factor, high recovery, good repeatability and extraction solvent volume at microliter level. Honey samples were successfully analyzed using the proposed method.  相似文献   

8.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

9.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

10.
Cunha SC  Fernandes JO 《Talanta》2010,83(1):117-125
A novel method combining dispersive liquid-liquid microextraction (DLLME) and heart-cutting multidimensional gas chromatography coupled to mass spectrometry was developed for the determination of free and total bisphenol A (BPA) and bisphenol B (BPB) in human urine samples. The DLLME procedure combines extraction, derivatization and concentration of the analytes into one step. Several important variables influencing the extraction efficiency and selectivity such as nature and volume of extractive and dispersive solvents as well as the amount of acetylating reagent were investigated. The temperature and time to hydrolyze BPA and BPB conjugates with a β-glucuronidase and sulfatase enzyme preparation were also studied. Under the optimized conditions good efficiency extraction (71-93%) and acceptable total DLLME yields (56-77%) were obtained for both analytes. Matrix-matched calibration curves were linear with correlation coefficients higher than 0.996 in the range level 0.1-5 μg/l, and the relative standard deviations (%RSD) were lower than 20% (n = 6). The limits of detection were 0.03 and 0.05 μg/l for BPA and BPB, respectively. The applicability of the proposed method for determining urinary free and total BPA and BPB was assessed by analyzing the human urine of a group of 20 volunteers. Free BPA was detected in 45% of the sample whereas total BPA was detected in 85% of the samples at concentrations ranging between 0.39 and 4.99 μg/l. BPB was detected in conjugated form in two samples.  相似文献   

11.
This work describes optimization of headspace single drop micro-extraction for extraction of five organophosphorus pesticides; thionazin, sulfotep, dimethoate, disulfoton and parathion in soil. Ultrasound has also been used successfully to improve and accelerate the extraction of the analytes from the sample. The optimized extraction performance was obtained when the experimental parameters were set as follows; 3.0 μL of octanol as extraction solvent, high ionic strength (20% sodium chloride), 1:1 (w/v) sample dilution with water, extraction temperature at 60 °C for 30 min; applying ultrasound and without any pH adjustment. The optimized method was linear over the calibration range (5–200 and 10–300 for different analytes) with limits of detection of 0.1–2.0 ng g−1. The enrichment factor for OPPs was 1.4–12.7 and the method was also reproducible with the relative standard deviations (RSD%) of 2.1–6.9%.  相似文献   

12.
This paper describes a rapid and solvent-free method, microwave-assisted headspace solid-phase microextraction (MA-HS-SPME), for the extraction of six commonly used synthetic polycyclic musks: galaxolide (HHCB), tonalide (AHTN), celestolide (ADBI), traseolide (ATII), cashmeran (DPMI) and phantolide (AHMI) from water samples prior to their determination using gas chromatography-mass spectrometry (GC-MS). The effects of various extraction parameters for the quantitative extraction of these analytes by MA-HS-SPME were systematically investigated and optimized. The analytes in a 20-mL water sample (in a 40-mL sample-vial containing 4 g of NaCl) were efficiently extracted by a polydimethylsiloxane-divinylbenzene (PDMS-DVB) fiber placed in the headspace when the system was microwave irradiated at 180 W for less than 4 min. The limits of detection (LODs) ranged from 0.05 to 0.1 ng/L, and the limits of quantification (LOQs) were less than 0.2 ng/L. A preliminary analysis of wastewater samples revealed that HHCB and AHTN were the two most commonly detected synthetic polycyclic musks; using a standard addition method, their concentration were determined to range from 1.2 to 37.3 ng/L with relative standard deviation (RSD) ranging from 2 to 6%. The results obtained using this approach are better than those from the conventional oil-bath HS-SPME.  相似文献   

13.
A new approach using single-drop microextraction (SDME) and gas chromatography–mass spectrometry for the determination of six haloacetic acids (HAAs) in water samples was presented. n-Octanol was used as extractant and derivatization reagent. HAAs were derivatized both simultaneously during the extraction in the solvent microdrop, and after extraction, inside a glass microvial (1.1 mm I.D.). Trifluoroacetic anhydride (TFAA) was used as the reaction catalyst. The influence of catalyst amount, derivatization time and temperature on the yield of the in-microvial derivatization was investigated. Derivatization reaction was performed using 1.2 μL of TFAA at 100 °C for 20 min. Extraction was performed using 1.8 μL of n-octanol containing TFAA (10%, v/v). Experimental parameters, such as, exposure time, sample pH and extraction temperature were controlled and optimized. Analytical parameters such as linearity, precision and limit of detection were also evaluated. The proposed method was proved to be a suitable analytical procedure for HAAs in water with limits of detection 0.1–1.2 μg/L. The relative recoveries range from 82.5 to 97.6% for all the target analytes. Precision values were from 5.1 to 8.5% (as intra-day relative standard deviation, RSD) and 8.8–12.3% (as inter-day RSD).  相似文献   

14.
A rapid and simple dispersive liquid-liquid microextraction (DLLME) has been developed to preconcentrate eighteen organochlorine pesticides (OCPs) from water samples prior to analysis by gas chromatography-mass spectrometry (GC-MS). The studied variables were extraction solvent type and volume, disperser solvent type and volume, aqueous sample volume and temperature. The optimum experimental conditions of the proposed DLLME method were: a mixture of 10 μL tetrachloroethylene (extraction solvent) and 1 mL acetone (disperser solvent) exposed for 30 s to 10 mL of the aqueous sample at room temperature (20 °C). Centrifugation of cloudy solution was carried out at 2300 rpm for 3 min to allow phases separation. Finally, 2 μL of extractant was recovered and injected into the GC-MS instrument. Under the optimum conditions, the enrichment factors ranged between 46 and 316. The calculated calibration curves gave a high-level linearity for all target analytes with correlation coefficients ranging between 0.9967 and 0.9999. The repeatability of the proposed method, expressed as relative standard deviation, varied between 5% and 15% (n = 8), and the detection limits were in the range of 1-25 ng L−1. The LOD values obtained are able to detect these OCPs in aqueous matrices as required by EPA methods 525.2 and 625. Analysis of spiked real water samples revealed that the matrix had no effect on extraction for river, surface and tap waters; however, urban wastewater sample shown a little effect for five out of eighteen analytes.  相似文献   

15.
A new and convenient synthesis of 2-acetyl-1-pyrroline (2AP), a potent flavor compound in rice, and its ring-deuterated analog, 2-acetyl-1-d2-pyrroline (2AP-d2), was reported. A stable isotope dilution assay (SIDA), involving headspace solid-phase microextraction (HS-SPME) combined with gas chromatography-positive chemical ionization-ion trap-tandem mass spectrometry (GC-PCI-IT-MS-MS), was developed for 2AP quantification. A divinylbenzene/carboxen/polydimethylsiloxane (DVB/CAR/PDMS) fiber was used for HS-SPME procedure and parameters affecting analytes recovery, such as extraction time and temperature, pH and salt, were studied. The repeatability of the method (n = 10) expressed as relative standard deviation (RSD) was 11.6%. A good linearity was observed from 5.9 to 779 ng of 2AP (r2 = 0.9989). Limits of detection (LOD) and quantification (LOQ) for 2AP were 0.1 and 0.4 ng g−1 of rice, respectively. The recovery of spiked 2AP from rice matrix was almost complete. The developed method was applied to the quantification of 2AP in aerial parts and grains of scented and non-scented rice cultivars.  相似文献   

16.
Hui-Ling Lee 《Talanta》2007,73(1):76-80
A sensitive and robust high-performance liquid chromatography-electrospray ionization tandem mass spectrometry method to analyze 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK) and its five metabolites in one passage was developed and validated. The method achieved excellent reproducibility and accuracy. Linearity was observed for all six compounds (R2 = 0.999) with detection limits (S/N ≥ 3) ranging from 0.2 to 2.4 pg on column and 0.01-0.12 ng ml−1 in samples injected. Average intra-day and inter-day variations (% R.S.D.) were 1.2 and 3.5%, respectively. A sample preparation method involving C8 and C18 solid phase extraction provided satisfactory recovery of the analytes in mouse urine. Each NNK metabolite was identified by its chromatographic retention time and specific fragmentation pattern. Since the carcinogenicity of NNK is related to its metabolism, the method described in this report should facilitate toxicological investigations into the carcinogenesis due to NNK exposure in the environment.  相似文献   

17.
A method using hollow fibre-protected liquid-phase microextraction (HF-LPME) with in situ derivatization followed by gas chromatography/mass spectrometry (GC/MS) was established for the analysis of β-agonists and β-blockers in urine. Because it can simultaneously extract and derivatize compounds of interest by methylbenzol and N-methyl-N-(trimethylsilyl) trifluoroacetamide (MSTFA) in HF-LPME, the approach overcomes the drawbacks of considerable time-consuming and tedious operation, meanwhile improves enrichment multiple. The optimized conditions were extraction for 20 min at 35 °C with 5.0 μL of mixed extraction solvent (methylbenzol/MSTFA = 1:1, v/v) with stirring speed of 925 rpm in 5.0 mL sample under pH 12.0 and 14% (w/v) NaCl. The method provided very wide linear ranges (0.25–400 ng mL−1) and low detection limits in the range of 0.08–0.10 ng mL−1 for clenbuterol, metoprolol and propranolol while enrichment factors reached up to 256. The analytes could be determined in spiked urine by the method with high extraction efficacy (93.79–109.04% recoveries) and precision (<9.70% RSD). It has a satisfactory result for metoprolol in practical human urine samples for a single-dose administration of 50 mg after 36 h. The proposed method only needs few microliters of organic solvent and derivatizing agent; the operation is simple, convenient and rapid for the trace analysis of β-agonists and β-blockers in biological fluids; it can be readily generalized for high sample throughput. So, it is hopeful that the study will facilitate the monitoring of β-agonists and β-blockers in the competition sports.  相似文献   

18.
Gamma-hydroxybutyric acid is an emerging drug of abuse. Beside relaxation and euphoria it causes hypnosis and unconsciousness. Therefore the substance is misused as recreational drug and at drug-facilitated sexual assaults. An automated and effortless method for quantitation of gamma-hydroxybutyric acid in serum and urine was optimized and validated. Five hundred microliters sample volume are used for both matrices. The acid catalyzed conversion of gamma-hydroxybutyric acid to the corresponding gamma-butyrolactone is applied. Furthermore the method is based on headspace solid-phase dynamic extraction coupled with gas chromatography–mass spectrometry. The extraction process is performed by repeated aspiration and ejection of the headspace through a steel cannula which is coated on the inside with a polydimethylsiloxane sorbent. Thus absorption of analyte molecules by the sorbent is achieved. The influence of parameters as sorbent type, incubation temperature, number of extraction strokes, injection port temperature and injection flow speed on extraction recovery was investigated. The validation revealed good accuracy with a bias less than ±5%. Intra- and interday precision determined at 10, 50 and 150 μg/ml for each matrix were in following ranges: 1.96–3.49% (intraday, serum), 2.38–4.31% (intraday, urine), 2.33–5.13% (interday, serum) and 2.53–5.64% (interday, urine). The method provided good linearity between 2 and 200 μg/ml yielding coefficients of determination R2 ≥ 0.9985. Limit of detection were determined at 0.16 μg/ml for serum and 0.17 μg/ml for urine, respectively. This method exhibits a fast, solvent-free and widely automated extraction process. It has been applied to toxicological routine analysis and therapeutic drug monitoring successfully.  相似文献   

19.
The determination of sialic acids (SIAs) has recently gained interest because of their potential role as markers of inflammatory disorders or chronic diseases. Hydrolysis of conjugated derivatives, solid-phase extraction (SPE) and derivatization steps constitute sample preparation prior to insertion of the analytical sample into a μ-liquid chromatograph-laser induced fluorescence (μ-LC-LIF) detector in the present method for the determination of two representative SIAs of human metabolism. Ultrasound-accelerated hydrolysis released free SIAs, which were efficiently concentrated in a dynamic manner using a lab-on-valve (LOV) module that allows automation of SPE for preconcentration and cleanup. This step was on-line connected with DMB-labeling of SIAs (derivatization), which was shortened from 180 min required with the conventional heating method to 20 min with ultrasound assistance. Individual separation of the target analytes was achieved within 20 min by μ-LC, while LIF detection endowed the overall method with high sensitivity. The LODs and LOQs provided by the method ranged 0.1–0.8 ng mL−1 and 0.4–1.0 ng mL−1 (between 0.1–0.8 pg and 0.4–1.0 pg expressed as on-column amount), respectively. High efficiency for interferents removal by SPE enabled the application of the method to four different biofluids—serum, urine, saliva and breast milk—for the determination of the target metabolites.  相似文献   

20.
The accurate and precise measurement of endogenous corticosteroids in urine is a powerful tool to understand the biochemical state in several diseases. In this study, a rapid, accurate, and sensitive method based on liquid chromatography-tandem mass spectrometry (LC–MS/MS) for the quantification of 67 endogenous gluco- and mineralo-corticosteroids and progestins has been developed and validated. Sample preparation, chromatographic separation, and mass spectrometric detection were optimized. Urine samples (0.5 mL) were hydrolyzed with β-glucuronidase and the released analytes were extracted by liquid–liquid extraction. The chromatographic separation was performed in 20 min after redisolution of the extract. MS behavior of endogenous corticosteroids was evaluated in order to select the most specific precursor ion ([M+H]+, [M+NH4]+, or [M+H-nH2O]+) for the detection. MS/MS determination was performed under selected reaction monitoring mode using electrospray ionization in positive mode. The method was shown to be linear (r > 0.99) in the range of endogenous concentrations for all studied metabolites. Limits of detection (LOD) below 1 ng mL−1 were typically obtained for analytes with a 3-oxo-4-ene structure whereas LODs below 15 ng mL−1 were common for the rest of analytes. Recoveries were higher than 80% and intra-assay precisions below 20%, evaluated at three concentration levels, were found for most steroids. No significant or moderate matrix effect, ranging from 54 to 155%, was observed for most of the analytes. The applicability of the method was confirmed by analyzing 24 h urine samples collected from twenty healthy volunteers and comparing the results with previously established normal ranges. The wide coverage of corticosteroid metabolism, together with short analysis time, low sample volume, simple sample preparation, and satisfactory quantitative results make this method useful for clinical purposes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号