首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
In this paper, the intercalation of 5-fluorocytosine (5-FC) into a layered inorganic host, Zn-Al layered double hydroxide (LDH), has been carried out using coprecipitation method to obtain 5-FC/LDH nanohybrids. The intercalated amount (AIn) of 5-FC into the LDH is remarkably dependent on the molar ratio (RF/M) of 5-FC to metal ions and the pH of coprecipitation system. The morphology of 5-FC molecules in 5-FC/LDH nanohybrids is dependent on the AIn. It is interestingly found that the morphology of the nanohybrid particles may be changed with the increase of RF/M from hexagonal plate particles to threadlike particles. The in vitro drug release from the nanohybrids is remarkably lower than that from the corresponding physical mixture and pristine 5-FC at either pH 4.8 or pH 7.5. In addition, the release rate of 5-FC from the nanohybrid at pH 7.5 is remarkably lower than that at pH 4.8, this is due to a possible difference in the release mechanism. The obtained results show these drug-inorganic nanohybrids can be used as a potential drug delivery system.  相似文献   

2.
The influence of p-terphenyl polyketides 1–3 from Aspergillus candidus KMM 4676 and cerebroside flavuside B (4) from Penicillium islandicum (=Talaromyces islandicus) against the effect of neurotoxins, rotenone and paraquat, on Neuro-2a cell viability by MTT and LDH release assays and intracellular ROS level, as well as DPPH radical scavenging activity, was investigated. Pre-incubation with compounds significantly diminished the ROS level in rotenone- and paraquat-treated cells. It was shown that the investigated polyketides 1–3 significantly increased the viability of rotenone- and paraquat-treated cells in two of the used assays but they affected only the viability of paraquat-treated cells in the LDH release assay. Flavuside B statistically increased the viability of paraquat-treated cells in both MTT and LDH release assays, however, it increased the viability of rotenone-treated cells in the LDH release assay. Structure–activity relationships for p-terphenyl derivatives, as well as possible mechanisms of cytoprotective action of all studied compounds, were discussed.  相似文献   

3.
An on-line strong cation-exchange (SCX)–reversed-phase (RP) capillary liquid chromatographic (cLC) method with ion-trap tandem mass spectrometric (IT-MS/MS) detection for the simultaneous determination of thromboxane (TX) B2, TXB3, leukotriene (LT) B4, LTD4 and lipoxin (LX) A4 in cell culture supernatants was developed and validated. In the present method, a high temperature (70 °C) was used for the separation on the analytical column to obtain efficient chromatography of the thromboxanes. An on-line sample preparation was performed, where peptides/proteins contained in the matrix were removed by the SCX column. Sample pre-treatment included dilution and filtration, and the analysis time including all sample preparation steps was 60 min per sample. Limits of detection in the range of 1–4 ng/mL cell culture supernatant, recoveries between 30% and 100%, within day precisions of less than 20% RSD and between day precisions of less than 30% RSD were obtained. Human mesenchymal stem cells (hMSCs) were stimulated with cytokine-containing supernatants derived from activated human T lymphocytes, and thromboxane, leukotriene and lipoxin production was analysed using the developed method. TXB2 was found in cultures from both non-differentiated and differentiated hMSCs that were stimulated with a cytokine-containing supernatant obtained from activated T-cells.  相似文献   

4.
10-Hydroxycamptothecin (HCPT) as a hydrophobic anticancer drug brings many challenges in the clinical applications due to its poor water solubility and the presence of a chemically unstable lactone ring. In this work, the nanocomposites of HCPT intercalated layered double hydroxide (LDH) were prepared by a secondary intercalation method, and the encapsulated HCPT could keep the biologically active lactone form. A Zn–Al–NO3 LDH was pillared with sebacate anions by a co-precipitation method in an aqueous medium, and then HCPT was intercalated into the LDH's gallery via hydrophobic interaction in an ethanol medium. The parallel alkyl chains of perpendicularly arranged sebacate anions in the LDH gallery provide a hydrophobic space for the drug intercalation. The in vitro release kinetics of HCPT from the nanocomposites could be fitted with the pseudo-second-order kinetic model, and the diffusion of HCPT through the LDH particles played an important role in controlling the drug release. The nanocomposites can be considered as a potential drug delivery system.  相似文献   

5.
Iron uptake and toxicity in Caco-2 cells   总被引:2,自引:0,他引:2  
The differences between the in vitro effects of iron attributed to valence, chelation, and complexation are known in terms of markers of oxidative stress. Few studies, however, describe the effects of iron on general markers of toxicity used in the testing of cell cultures. The aim of the present study was to determine the toxicity and uptake of different salts and iron complexes in the human intestinal cell line, Caco-2.Cells were incubated with 1.5 mM of different species of iron [FeCl3/nitrilotriacetic acid (NTA) (1:2), FeCl3/citric acid (1:2), FeCl3 and FeSO4] for 22–24 h. Thereafter, toxicological and uptake experiments were performed.The iron uptake, viability (via MTT assay), and membrane stability (via LDH release) of Caco-2 cells incubated with various iron forms differed significantly from untreated controls which showed no detrimental effects on cells and less iron uptake. The lowest signal for cell viability (MTT assay) was found after the incubation of the cells with FeCl3/citric acid, being significantly different to treatment with FeCl3, where the highest MTT signal was detected (p=0.002). No differences between the tested iron species could be found regarding cell proliferation (via serial cell counting) and viability using the trypan blue exclusion test. The lowest membrane damage (via LDH release) was registered in cells treated with FeCl3/citric acid (1:2), whereas the highest LDH release could be found in cells incubated with FeCl3/NTA (1:2). The highest intracellular iron concentration (measured via GFAAS) was detected after the treatment of Caco-2 cells with FeCl3 and FeCl3/NTA (1:2).This study substantiates the importance of the choice of complexes, as NTA seemed to enhance the toxicity of iron, while citric acid inhibited iron uptake and toxicity.  相似文献   

6.
A simple and highly effective reversed-phase (RP) high-performance liquid chromatography (HPLC) method is described for analysing glutathione (GSH) and glutathione disulfide (GSSG) in out-flowing supernatants and lysates of perfusion cell cultures of human kidney cells (HK-2 cells) continuously exposed to cadmium chloride (CdCl2), which is a well-known nephrotoxin. The developed linear liquid chromatographic gradient employs monolithic poly(styrene-co-divinylbenzene) (PS/DVB) as a stationary phase and is adaptable for coupling to mass spectrometry via an electrospray ionisation interface (LC-ESI/MS), which is carried out in case of co-eluting peaks. This study presents a quantitative assay of glutathione over the time of experiment and cell lysates at the end of the experiment. The assay of out-flowing supernatants has the potential to be applied as an online assay in high time resolution. Glutathione (reduced and oxidised, GSH and GSSG) is chosen as an indicator for toxic effects in the cultured cells. In principle it is possible to show the concentration of glutathione as a function of time in an investigation of exposure of the HK-2 cell line to CdCl2. In addition to glutathione analysis, well-established assays of cell death such as enzyme release and cell viability are performed to obtain information about the number of living cells. Toxicity of 5 μM CdCl2 is manifested in all of the assays applied. Fast (<7 min) and highly reproducible (max. aberration 4.7%) determination of glutathione could be achieved.  相似文献   

7.
《中国化学快报》2023,34(11):108224
Finding more effective and safe non-viral vectors to transfer genes into cancer cells has become the key of immune gene therapy for cancer. Herein a triblock compound MPEG2000–PDLLA4000–MPEG2000 modified by cationic liposome DOTAP was used as a non-viral vector DOTAP/MPEG2000–PDLLA4000–MPEG2000 (DMPM) to effectively transfer interleukin (IL)-12 plasmid (pIL-12) into tumor tissue. IL-12 produced by transfected tumor cells successfully inducing lymphocyte proliferation and promoting interferon-γ (IFN-γ) secretion, which resulted in tumor cells death. The ability of DMPM to transfer pIL-12 and the immune effect induced by IL-12 in cells had been explored. The anti-tumor effect, mechanism and safety of pIL-12/DMPM in mice cancer model were investigated in this study. Our results showed that the pIL-12 transferred by DMPM was highly expressed both in CT26 cells and B16-F10 cells. IL-12 expressed in the culture supernatant of transfected tumor cells stimulated lymphocyte proliferation and promoted IFN-γ secretion. The experimental result confirmed that pIL-12/DMPM therapy significantly reduced tumor growth in mice model. We designed the nanocomposite DMPM to deliver pIL-12 for cancer treatment and explored its therapeutic efficacy and the underlying anti-tumor mechanism. Our study suggested pIL-12 loaded by DMPM complex would be an effective strategy for cancer treatment.  相似文献   

8.
刘春霞 a  侯万国a  b  李妍a  李丽芳c 《中国化学》2008,26(10):1806-1810
采用共沉淀法把抗癌药物喜树碱(Camptothecin, CPT)插入层状双金属氢氧化物(layered double hydroxide, LDH)层间, 合成了CPT-LDH纳米杂化物。结果表明,在CPT-LDH纳米杂化物中,CPT在层间的排布方式有两种,即平行于层板的单层排列和垂直于层板的双层排列;缓释研究表明,CPT-LDH在pH 7.5的磷酸缓冲液中具有明显的缓释效果,其释放速率较相同pH值时CPT和LDH物理混合物的释放速率明显降低;考察了CPT-LDH的药物释放机理,在 pH 7.5的缓冲溶液中,释放过程受粒内扩散过程控制;CPT-LDH纳米杂化物的释放动力学符合准一级动力学过程。  相似文献   

9.
Technological advances in cytotoxicity analysis have now made it possible to obtain real time data on changes in cell growth, morphology and cell death. This type of testing has a great potential for reducing and refining traditional in vivo toxicology tests. By monitoring the dynamic response profile of living cells via the xCELLigence real-time cell analyzer for high-throughput (RTCA HT) system, cellular changes including cell number (cell index, CI) are recorded and analyzed. A special scaled index defined as normalized cell index (NCI) is used in the analysis which reduces the influence of inter-experimental variations. To assess the extent of exposure of the tested chemicals, a two-exponent model is presented to describe rate of cell growth and death. This model is embodied in the time and concentration-dependent cellular response curves, and the parameters k1 and k2 in this model are used to describe the rate of cell growth and death. Based on calculated k2 values and the corresponding concentrations, a concentration–response curve is fitted. As a result, a cytotoxicity assessment named KC50 is calculated. The validation of the proposed method is demonstrated by exposing six cell lines to 14 chemical compounds. Our findings suggest that the proposed KC50-based toxicity assay can be an alternative to the traditional single time-point assay such as LC50 (the concentration at which 50% of the cells are killed). The proposed index has a potential for routine evaluation of cytotoxicities. Another advantage of the proposed index is that it extracts cytotoxicity information when CI fails to detect the low toxicity.  相似文献   

10.
We report two synthetic aminopyrrolic compounds that induce apoptotic cell death. These compounds have been previously shown to act as receptors for mannosides. The extent of receptor-induced cell death is greater in cells expressing a high level of high-mannose oligosaccharides than in cells producing lower levels of high-mannose glycans. The ability of synthetic receptors to induce cell death is attenuated in the presence of external mannosides. The present results provide support for the suggestion that the observed cell death reflects an ability of the receptors to bind mannose displayed on the cell surface. Signaling pathway studies indicate that the synthetic receptors of the present study promote JNK activation, induce Bax translocation to the mitochondria, and cause cytochrome c release from the mitochondria into the cytosol, thus promoting caspase-dependent apoptosis. Such effects are also observed in cells treated with mannose-binding ConA. The present results thus serve to highlight what may be an attractive new approach to triggering apoptosis via modes of action that differ from those normally used to promote apoptosis.  相似文献   

11.
There is a rapidly growing demand for fluorescent single-chain Fv (scFv) antibody fragments for many applications. Yeasts have developed into attractive hosts for recombinant production of these functionalized proteins because they provide several advantages over prokaryotes and higher eukaryotes as expression systems, e.g., being capable of high-level secretion of heterologous proteins. In this study, we report Schizosaccharomyces pombe as a new host organism for secretory production of scFv-green fluorescent protein (GFP) fusions and compare it with previously described yeast expression systems. We cloned a plasmid for the expression and secretion of the anti-p24 (human immunodeficiency virus 1) CB4-1 scFv fused to GFP. After expression of the scFv–GFP fused to an N-terminal Cpy1 secretion signal sequence, fluorescence microscopy of living yeast cells indicated that the heterologous protein entered the secretory pathway. Western blot analysis of cell-free culture supernatants confirmed that the scFv–GFP was efficiently secreted with yields up to 5 mg/L. In addition, fluorescence measurements of culture supernatants demonstrated that the GFP moiety of the scFv–GFP protein is fully functional after secretion. Our data suggest that S. pombe has the potential for being used as alternative expression host in recombinant antibody fragment production by ensuring efficient protein processing and secretion.  相似文献   

12.
Cannabidiol (CBD) is a biologically active compound present in the plants of the Cannabis family, used as anticonvulsant, anti-inflammatory, anti-anxiety, and more recently, anticancer drug. In this work, its use as a new self-assembly inducer in the formation of nanoparticles is validated. The target conjugates are characterized by the presence of different anticancer drugs (namely N-desacetyl thiocolchicine, podophyllotoxin, and paclitaxel) connected to CBD through a linker able to improve drug release. These nanoparticles are formed via solvent displacement method, resulting in monodisperse and stable structures having hydrodynamic diameters ranging from 160 to 400 nm. Their biological activity is evaluated on three human tumor cell lines (MSTO-211H, HT-29, and HepG2), obtaining GI50 values in the low micromolar range. Further biological assays were carried out on MSTO-211H cells for the most effective NP 8B, confirming the involvement of paclitaxel in cytotoxicity and cell death mechanism  相似文献   

13.
Lepromatous leprosy patients generally have reduced response to Mycobacterium leprae antigens in an in vitro lymphocyte transformation test, which could be due to insufficient generation of reactions or to active suppression of any reaction generated. We could detect 3 types of lack of reactivity: one which could be restored by the addition of supernatants from healthy, PHA-stimulated lymphocyte cultures, one which could not thus be restored and one in which the culture supernatant contained factors able to suppress mitogen responses of healthy cells. We compared responses of cells rom untreated patients, patients treated for 12–20 months with multiple drug therapy and patients with up to 20 years of dapsone treatment; all types of the disease were represented.Untreated patients of all types had low responses which were not always reconstituted by lymphokine-rich supernatants, but they did not produce the non-specific soluble suppressive factors. In most cases, including BL/LL types, after the initial months of treatment, antigen response improved and was further increased by the addition of supernatants containing lymphokines. Most of the long-term-treated, stable patients had a lymphokine-reconstitutable antigen response, and in most cases also produced non-specific suppressive factor(s). The question as to why leprosy patients do not respond to M. leprae antigen is a complex one; our results suggest that it is related to the activity of the infection in each group of patients.  相似文献   

14.
15.
The tuberous rhizome Kaempferia rotunda Linn. has been used as food and traditional medicinal plant, and the purified K. rotunda lectin (KRL) showed antiproliferative activity against Ehrlich ascites carcinoma cells [1]. In the present study, KRL showed agglutination activity against Escherichia coli and Staphylococcus aureus, with partial inhibition of their growth. MTT assay was used to investigate the effect of KRL on EAC cells in vitro in RPMI-1640 medium, and it was found that lectin inhibited 6.2–50.5 % cell growth at the range of 7.5–120 μg/ml protein concentration. The cell cycle arrest at G0/G1 phase of EAC cells was also determined by flow cytometry after treatment with lectin. The apoptotic cell morphological changes of the treated EAC cells were confirmed by fluorescence and optical microscope. In the presence of caspase-3 inhibitor, the cell growth inhibition of the lectin was reduced significantly. RT-PCR was used to evaluate the expression of apoptosis-related genes, bcl-2, bcl-X, and bax. Bax gene expression was intensively increased with the despaired of bcl-X gene expression and significant decrease of bcl-2 gene expression in the cells treated with KRL. Thus, lectin induced apoptotic cell death in Ehrlich ascites carcinoma cells.  相似文献   

16.
As for the stabilization of chemically sensitive bioactive molecule in this study, gallic acid (GA) with antioxidant property was intercalated into interlayer space of layered double hydroxide (LDH), which was realized by exfoliation and reassembling reaction. At first, the pristine nitrate-type Zn2Al-LDH in solid state was synthesized via co-precipitation followed by the hydrothermal treatment at 80 °C for 6 h, and then exfoliated in formamide to form a colloidal solution of exfoliated LDH nanosheets, and finally reassembled in the presence of GA to prepare GA intercalated LDH (GA-LDH) desired, where the pH was adjusted to 8.0 in order to deprotonate GA to form gallate anion. According to the XRD analysis, GA-LDH showed well-developed (00l) diffraction peaks with a basal spacing of 1.15 nm, which was estimated to be larger than that of the pristine LDH (0.88 nm), indicating that gallate molecules were incorporated into LDH layers with perpendicular orientation. From the FT-IR spectra it was found that gallic acid was completely deprotonated into gallate, and stabilized in between LDH lattices via electrostatic interaction. The content of GA in GA-LDH was determined to be around 23 wt% by UV–vis spectroscopic study, which was also confirmed by HPLC analysis. According to the in-vitro release of GA out of GA-LDH in PBS solution (pH 7.4) at 4 °C, GA was sustainably released from GA-LDH nanohybrid up to 86% within 72 h. The antioxidant property of GA-LDH was almost the same with that of intact GA which was examined by DPPH. The photostability of GA-LDH under UV light irradiation was immensely enhanced compared to intact GA. It is, therefore, concluded that the present GA-LDH nanohybrid can be considered as an excellent antioxidant material with high chemical- and photo-stabilities, and controlled release property.  相似文献   

17.
In this work, we demonstrated that biological cells could be cultured in a continuous-perfusion glass microchip system for drug screening. We used mouse Col1a1GFP MC-3T3 E1 osteoblastic cells, which have a marker gene system expressing green fluorescent protein (GFP) under the control of osteoblast-specific promoters. With our microchip-based cell culture system, we realized automated long-term monitoring of cells and sampling of the culture supernatant system for osteoblast differentiation assay using a small number of cells. The system successfully monitored cells for 10 days. Under the 3D microchannel condition, shear stress (0.07 dyne/cm2 at a flow rate of 0.2 μL/min) was applied to the cells and it enhanced the GFP expression and differentiation of the osteoblasts. Analysis of alkaline phosphatase (ALP), which is an enzyme marker of osteoblasts, supported the results of GFP expression. In the case of differentiation medium containing bone morphogenetic protein 2, we found that ALP activity in the culture supernatant was enhanced 10 times in the microchannel compared with the static condition in 48-well dishes. A combined system of a microchip and a cell-based sensor might allow us to monitor osteogenic differentiation easily, precisely, and noninvasively. Our system can be applied in high-throughput drug screening assay for discovering osteogenic compounds.  相似文献   

18.
Ultraviolet-A (365 nm, 120 kJ/m2/h) exposure caused cell death in Pseudomonas aeruginosa at doses at which Escherichia coli cell viability was not affected. We have not found that UVA induced growth delay or any other sublethal effect. Irradiated suspensions of P. aeruginosa showed a marked reduction in membrane-bound succinate dehydrogenase (SDH) and lactate dehydrogenase (LDH) activities. Succinate-driven respiration and several nutrient transport systems were also inhibited. Whereas SDH and LDH activities were independent of the irradiation conditions, cell viability, respiration and transport systems were protected when irradiation was performed in an N2 atmosphere. A similar protective effect was observed when cells were grown in media containing glycerol or when preirradiation bacterial growth was carried out at 30°C (instead of 37°C). Results suggest that UVA induces a differential damaging effect on several biochemical functions of P. aeruginosa. The UVA induced photodamage may fall into two categories: indirect damage mediated by oxygen (cell killing and inhibition of respiration and transport systems) and direct damage to SDH and LDH (apparently not oxygen dependent). These enzymes and leucine transport appear not to be involved in the lethal effect described herein because they were altered despite viability-preserving conditions.  相似文献   

19.
In the present study, layered double hydroxide (LDH) nanoplates with high crystallinity and uniform size were facilely synthesized to act as reinforcing agents in polymer materials. The structure of the synthesized LDH nanoplates was characterized by X‐ray diffraction, Fourier transform infrared spectra, scanning electron microscopy, transmission electron microscopy, and atomic force microscopy measurements. Subsequently, the LDH nanoplates were incorporated into poly(vinyl alcohol) (PVA) matrix as reinforcing agents based on a solution casting method. The LDH nanoplates were well dispersed in PVA matrix and formed strong interfacial interactions with PVA chains, leading to remarkable improvements of thermal stability, flame retardancy, and mechanical properties. With the incorporation of 1 wt% LDH nanoplates into PVA, the Tonset and T50% increased by 11°C and 57°C, respectively. Moreover, the presence of LDH nanoplates decreases the decomposition rates of PVA and increases the amount of char residues. Compared with pure PVA, the peak heat release rate value of the PVA/5 wt% LDH nanocomposites is decreased by 52%. The tensile strength and the elongation at break increased by 71% and 187%, respectively, when incorporating with 3 wt% LDH nanoplates. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

20.
The present study highlights the biosynthesis of silver nanoparticles (AgNPs) using culture supernatant of Massilia sp. MAHUQ-52 as well as the antimicrobial application of synthesized AgNPs against multi-drug resistant pathogenic Klebsiella pneumoniae and Salmonella Enteritidis. Well-defined AgNPs formation occurred from the reaction mixture of cell-free supernatant and silver nitrate (AgNO3) solution within 48 h of incubation. UV-visible spectroscopy analysis showed a strong peak at 435 nm, which corresponds to the surface plasmon resonance of AgNPs. The synthesized AgNPs were characterized by FE-TEM, EDX, XRD, DLS and FT-IR. From FE-TEM analysis, it was found that most of the particles were spherical shape, and the size of synthesized nanoparticles (NPs) was 15–55 nm. EDX spectrum revealed a strong silver signal at 3 keV. XRD analysis determined the crystalline, pure, face-centered cubic AgNPs. FT-IR analysis identified various functional molecules that may be involved with the synthesis and stabilization of AgNPs. The antimicrobial activity of Massilia sp. MAHUQ-52 mediated synthesized AgNPs was determined using the disk diffusion method against K. pneumoniae and S. Enteritidis. Biosynthesized AgNPs showed strong antimicrobial activity against both K. pneumoniae and S. Enteritidis. The MICs of synthesized AgNPs against K. pneumoniae and S. Enteritidis were 12.5 and 25.0 μg/mL, respectively. The MBC of biosynthesized AgNPs against both pathogens was 50.0 μg/mL. From FE-SEM analysis, it was found that the AgNPs-treated cells showed morphological changes with irregular and damaged cell walls that culminated in cell death.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号