首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
The structure of a nickel oxide film 2 ML thick has been investigated by LEED intensity analysis. The NiO film was prepared by evaporating Ni in presence of O2 at a pressure in the 10−6 mbar range. The growth of the oxide film was followed by XPS, LEIS and LEED. In the early stages of deposition, the film shows a (2 × 1) superstructure in LEED. After deposition of 2 ML of NiO, a sharp (1 × 1) LEED pattern is observed. The intensity versus electron energy curves of the LEED spots were measured for this NiO(1 × 1) film and analysed by means of the tensor LEED method. A good level of agreement of the experimental LEED intensities with those calculated for a pseudomorphic NiO(0 0 1) film was obtained. We found that oxygen atoms at the oxide-substrate interface are on-top silver atoms. The interlayer distance in the oxide does not differ significantly from that in bulk NiO(0 0 1), within the accuracy of the analysis. An outward displacement (0.05 ± 0.05 Å) of oxygen atoms with respect to nickel atoms was found at the oxide film surface. The interlayer distance at the silver-nickel oxide interface is 2.43 ± 0.05 Å.  相似文献   

2.
We have studied the nano-patterning of CoO film induced by misfit dislocation network at the interface with the Ag(0 0 1) substrate. Grazing incidence diffraction (GIXD), X-ray photoemission spectroscopy (XPS) and low energy electron diffraction (LEED) have been used to characterize chemistry and structure of the CoO layers. The XPS spectrum of the Co 2p core level permitted to establish the stoichiometric growth of CoO. The structure of the CoO film together with the absorption sites of cobalt and oxygen atoms was determined, thanks to GIXD measurements. Moreover we have followed the evolution of the in-plane lattice constant of the CoO as a function of the film thickness. It turns out that the CoO film growth starts with the same in-plane lattice constant of the Ag(0 0 1) substrate up to 3-4 ML; afterwards the in-plane parameter of CoO steadily increases before reaching a stable value of 2.98 Å at 23 ML. During the relaxation process, at about 8 ML of film thickness, we observe the formation of a buried misfit dislocation network. These dislocations, that have a period of 9.2 nm for a film thickness of 23 ML, induce mosaicity in the CoO film which then appears as a regular distribution of tilted domains.  相似文献   

3.
The very first stages of the growth of NiO on Cu(1 1 1) is examined on a microscopic scale. The paper focuses on the morphological and structural characterization of nanostructures formed in the 0-1 Å thickness range. Ultra-thin NiO films, obtained through evaporation of a Ni rod under an oxygen atmosphere were grown at 550 K. In the early stages of the growth the oxide film morphology shows 10-30 nm large, monolayer high, islands with a partial incorporation of metallic Ni in the first Cu(1 1 1) surface plane. The first layer is formed by an epitaxial atomic layer exhibiting a STM contrast similar to the one observed on adsorbed oxygen on Cu(1 1 0). A NiO cluster nucleation and coalescence mechanism is proposed in order to explain the formation of the second NiO layer. A α-Ni2O3 hexagonal phase, or a structural distortion of the NiO(1 1 1)()R30° structure could both explain the complex LEED patterns.  相似文献   

4.
We have studied the dislocation structures that occur in films of Ag, Au, and Ag0.5Au0.5 alloy on a Ru(0 0 0 1) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as “trigons.” In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moiré structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.  相似文献   

5.
To understand the interaction of water with MgO(100), a detailed quantitative assessment of the interfacial chemistry is necessary. We have used ambient pressure X-ray photoelectron spectroscopy (XPS) to measure molecular (H2O) and dissociative (OH) water adsorption on a 4 monolayer (ML) thick MgO(100)/Ag(100) film under ambient conditions. Since the entire 4 ML metal oxide (Ox) film is probed by XPS, the reaction of the MgO film with water can be quantitatively studied. Using a multilayer model (Model 1) that measures changes in Ox thickness from O 1s (film) and Ag 3d (substrate) spectra, it is shown that the oxide portion of the MgO film becomes thinner upon hydroxylation. A reaction mechanism is postulated in which the top-most layer of MgO converts to Mg(OH)2 upon dissociation of water. Based on this mechanism a second model (Model 2) is developed to calculate Ox and OH thickness changes based on OH/Ox intensity ratios from O 1s spectra measured in situ, with the known initial Ox thickness prior to hydroxylation. Models 1 and 2 are applied to a 0.15 Torr isobar experiment, yielding similar results for H2O, OH and Ox thickness changes as a function of relative humidity.  相似文献   

6.
In this work, the effect of tin-doped indium oxide (ITO) film as capping layer on the agglomeration of copper film and the appearance of copper silicide was studied. Both samples of Cu 100 nm/ITO 10 nm/Si and ITO 20 nm/Cu 100 nm/ITO 10 nm/Si were prepared by sputtering deposition. After annealing in a rapid thermal annealing (RTA) furnace at various temperatures for 5 min in vacuum, the samples were characterized by four probe measurement for sheet resistance, X-ray diffraction (XRD) analysis for phase identification, scanning electron microscopy (SEM) for surface morphology and transmission electron microscopy (TEM) for microstructure.The results show that the sample with ITO capping layer is a good diffusion barrier between copper and silicon at least up to 750 °C, which is 100 °C higher than that of the sample without ITO capping layer. The failure temperature of the sample with ITO capping layer is about 800 °C, which is 100 °C higher than that of the sample without ITO capping layer. The ITO capping layer on Cu/ITO/Si can obstacle the agglomeration of copper film and the appearance of Cu3Si phase.  相似文献   

7.
G.H. Yu 《Applied Surface Science》2010,256(22):6592-6595
In this paper, we investigated the elemental inter-diffusion in MgO TMR system, namely, between MgO barrier and free layer (CoFeB, NiFe or their combination) interface and the oxygen diffusion into the capping layers (Ta, Ru, TaN) at elevated temperatures using simple sheet film stack to simplify the results interpretation. Boron, cobalt, iron, and nickel show various diffusion tendencies into the MgO barrier after annealing the sheet film stack. Oxygen has different penetration depth into single CoFeB free layer upon annealing under N2 + Ar protective atmosphere for different capping layers. Ru and TaN capping layer provide much better O2 diffusion barrier, compared with Ta capping layer. This could potentially change the boron segregation tendency at free layer and capping layer interface and thus affect the interface crystallization process and lattice matching between the crystallized CoFeB free layer and the MgO(0 0 1) barrier layer. All these effects will impact the overall TMR performance.  相似文献   

8.
The anisotropic magnetoresistance (AMR) of a Ta (5 nm)/MgO (3 nm)/Ni81Fe19 (10 nm)/MgO (2 nm)/Ta (3 nm) film with MgO-Nano Oxide Layer (NOL) increases dramatically from 1.05% to 3.24% compared with a Ta (5 nm)/Ni81Fe19 (10 nm)/Ta (3 nm) film without the MgO-NOL layer after annealing at 380 °C for 2 h. Although the MgO destroys the NiFe (1 1 1) texture, it enhances the specular electron scattering of the conduction electrons at the NOL interface and suppresses the interface reactions and diffusion at the Ta/NiFe and NiFe/Ta interfaces. The NiFe (1 1 1) texture was formed after the annealing, resulting in a higher AMR ratio. X-ray photoelectron spectroscope results show that Mg and Mg2+ were present in the MgOx films.  相似文献   

9.
The growth mode and electronic structure of Au nano-clusters grown on NiO and TiO2 were analyzed by reflection high-energy electron diffraction, a field-emission type scanning electron microscope, medium energy ion scattering and photoelectron spectroscopy. Au was deposited on clean NiO(0 0 1)-1 × 1 and TiO2(1 1 0)-1 × 1 surfaces at room temperature with a Knudsen cell at a rate of 0.25-0.35 ML/min (1 ML = 1.39 × 1015 atoms/cm2:Au(1 1 1)). Initially two-dimensional (2D) islands with thickness of one Au-atom layer grow epitaxially on NiO(0 0 1) and then neighboring 2D-islands link each other to form three-dimensional (3D)-islands with the c-axis oriented to the [1 1 1] direction. The critical size to form 3D-islands is estimated to be about 5 nm2. The shape of the 3D-islands is well approximated by a partial sphere with a diameter d and height h ranging from 2.0 to 11.8 nm and from 0.95 to 4.2 nm, respectively for Au coverage from 0.13 to 4.6 ML. The valence band spectra show that the Au/NiO and Au/TiO2 surfaces have metallic characters for Au coverage above 0.9 ML. We observed Au 4f spectra and found no binding energy shift for Au/NiO but significant higher binding energy shifts for Au/TiO2 due to an electron charge transfer from Au to TiO2. The work function of Au/NiO(0 0 1) gradually increases with increase in Au coverage from 4.4 eV (NiO(0 0 1)) to 5.36 eV (Au(1 1 1)). In contrast, a small Au deposition(0.15 to 1.5 ML) on TiO2(1 1 0) leads to reduction of the work function, which is correlated with an electron charge transfer from Au to TiO2 substrate.  相似文献   

10.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

11.
Epitaxial Fe3O4(0 0 1) thin films (with a thickness in the range of 10-20 nm) grown on MgO substrates were characterized using low-energy electron diffraction (LEED), conversion electron Mössbauer spectroscopy (CEMS) and investigated using Rutherford backscattering spectrometry (RBS), channeling (RBS-C) experiments and X-ray reflectometry (XRR). The Mg out-diffusion from the MgO substrate into the film was observed for the directly-deposited Fe3O4/MgO(0 0 1) films. For the Fe3O4/Fe/MgO(0 0 1) films, the Mg diffusion was prevented by the Fe layer and the surface layer is always a pure Fe3O4 layer. Annealing and ion beam mixing induced a very large interface zone having a spinel and/or wustite formula in the Fe3O4-on-Fe film system.  相似文献   

12.
This study first reports the initial growth stages of sodium chloride (NaCl) on Ag(1 1 0) at room temperature. NaCl grows in bi-layer mode along its [1 0 0] axis and gives rise to (4 × 1) and (1 × 2) reconstructed domains for coverages lower than two monolayers (ML), a minimal thickness inducing a bi-dimensional closed film. In addition, a 10 ML NaCl film has been examined by low energy electron diffraction (LEED). LEED analysis leads to the dissociation of the NaCl deposit in a few minutes. The NaCl dissociation implies Cl desorption from the surface and Na remaining on it. The residual Na is arranged in the form of a (2 × 1) surface reconstruction and is found to be strongly bounded to the Ag substrate. These findings have been established by using the X-ray photoelectron spectroscopy technique.  相似文献   

13.
Electron transfer processes in the neutralization of Li+ ions on Ag layers grown on Cu(1 1 1) are investigated in quest of quantum confinement effects. Neutralization probabilities in the scattering of Li+ for incident ion energies in the 300 eV to 2 keV range are reported for Ag coverages ranging from 0.15 ML to 5 ML. Results are compared to those for Ag(1 1 1) and Cu(1 1 1) surfaces of bulk crystals. Although existing studies of the characteristics of Ag layers on Cu(1 1 1) indicate significant differences in electronic structure as a function of film thickness, the electron transfer probabilities we measure are found to be very close to those for bulk Ag(1 1 1). These results are commented on the basis of existing models and earlier studies of Li ion neutralization on various metals.  相似文献   

14.
Single crystalline NiO nanoplatelets were successfully synthesized by new facile method at 200 °C. The morphology and microstructure were determined by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD measurement indicated that the prepared sample had typical cubic structures. The SEM investigation confirmed that the product was of the form of nanoplatelets. These nanoplatelets have average width length 250 nm and thickness of 20 nm. The field emission measurements demonstrate that the NiO nanoplatelets show a promising field emission property. The improved field emission is attributed to the local field enhancement factor at the nanoplatelets. The results confirm the importance of the morphology of nanomaterial in field emission.  相似文献   

15.
An in-plane magnetic anisotropy of FePt film is obtained in the MgO 5 nm/FePt t nm/MgO 5 nm films (where t=5, 10 and 20 nm). Both the in-plane coercivity (Hc∥) and the perpendicular magnetic anisotropy of FePt films are increased when introducing an Ag-capped layer instead of MgO-capped layer. An in-plane coercivity is 3154 Oe for the MgO 5 nm/FePt 10 nm/MgO 5 nm film, and it can be increased to 4846 Oe as a 5 nm Ag-capped layer instead of MgO-capped layer. The transmission electron microscopy (TEM)-energy disperse spectrum (EDS) analysis shows that the Ag mainly distributed at the grain boundary of FePt, that leads the increase of the grain boundary energy, which will enhance coercivity and perpendicular magnetic anisotropy of FePt film.  相似文献   

16.
A low energy electron diffraction (LEED) investigation of the structure of the surface of an FeO(0 0 1) thin film grown on Ag(0 0 1) is presented. The results show that this surface has an almost bulk termination structure with a very small rumple on the first layer, which agrees with the structure found in other studies carried out on the (0 0 1) surface of oxides that have rock-salt structure. Evidences that may support a linear behaviour of the topmost layer rumple with the oxide lattice constant are also discussed.  相似文献   

17.
The effects on the X-ray photoelectron diffraction intensities from the substrate produced by epitaxial NiO(0 0 1) films of various thickness deposited on Ag(0 0 1) were investigated. The variations in the Ag XPD curves induced by the NiO films can be explained in terms of multiple scattering of the electrons emitted by the substrate atoms along the close-packed rows of the overlayer. Intensity minima in the XPD curves from the substrate in correspondence to intensity maxima in the XPD curves from the overlayer are observed when the thin film is commensurate with the substrate. For films of suitable thickness, the analysis of XPD curves from the substrate allows one to get information about the structure of the film and of the film–substrate interface.  相似文献   

18.
M. Walker  M. Draxler 《Surface science》2006,600(16):3327-3336
The initial growth of Pt on the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) surfaces has been studied by coaxial impact collision ion scattering spectroscopy (CAICISS), low energy electron diffraction (LEED) and X-ray photoelectron spectroscopy (XPS). Prior to Pt deposition, the atomic structure of the near-surface regions of the Ni(1 1 0)-(3 × 1)-O and NiO(1 1 0) structures were studied using CAICISS, finding changes to the interlayer spacings due to the adsorption of oxygen. Deposition of Pt on the Ni(1 1 0)-(3 × 1)-O surface led to a random substitutional alloy in the near-surface region at Pt coverages both below and in excess of 1 ML. In contrast, when the surface was treated with 1800 L of atomic oxygen in order to form a NiO(1 1 0) surface, a thin Pt layer was formed upon room temperature Pt deposition. XPS and LEED data are presented throughout to support the CAICISS observations.  相似文献   

19.
V.N. Ageev  T.E. Madey 《Surface science》2006,600(10):2163-2170
The electron stimulated desorption (ESD) yield and energy distributions for Cs atoms from cesium layers adsorbed on germanium-covered tungsten have been measured for different Ge film thicknesses, 0.25-4.75 ML (monolayer), as a function of electron energy and cesium coverage Θ. The measurements have been carried out using a time-of-flight method and surface ionization detector. In the majority of measurements Cs is adsorbed at 300 K. The appearance threshold for Cs atoms is about 30 eV, which correlates well with the Ge 3d ionization energy. As the electron energy increases the Cs atom ESD yield passes through a wide maximum at an electron energy of about 120 eV. In the Ge film thickness range from 0.5 to 2 ML, resonant Cs atom yield peaks are observed at electron energies of 50 and 80 eV that can be associated with W 5p and W 5s level excitations. As the cesium coverage increases the Cs atom yield passes through a smooth maximum at 1 ML coverage. The Cs atom ESD energy distributions are bell-shaped; they shift toward higher energies with increasing cesium coverage for thin germanium films and shift toward lower energies with increasing cesium coverage for thick germanium films. The energy distributions for ESD of Cs from a 1 ML Ge film exhibit a strong temperature dependence; at T = 160 K they consist of two bell-shaped curves: a narrow peak with a maximum at a kinetic energy of 0.35 eV and a wider peak with a maximum at a kinetic energy of 0.5 eV. The former is associated with W level excitations and the latter with a Ge 3d level excitation. These results can be interpreted in terms of the Auger stimulated desorption model.  相似文献   

20.
A layer of silver was deposited onto the surface of glass substrates, coated with AZO (Al-doped ZnO), to form Ag/AZO film structures, using e-beam evaporation techniques. The electrical and optical properties of AZO, Ag and Ag/AZO film structures were studied. The deposition of Ag layer on the surface of AZO films resulted in lowering the effective electrical resistivity with a slight reduction of their optical transmittance. Ag (11 nm)/AZO (25 nm) film structure, with an accuracy of ±0.5 nm for the thickness shows a sheet resistance as low as 5.6 ± 0.5 Ω/sq and a transmittance of about 66 ± 2%. A coating consisting of AZO (25 nm)/Ag (11 nm)/AZO (25 nm) trilayer structure, exhibits a resistance of 7.7 ± 0.5 Ω/sq and a high transmittance of 85 ± 2%. The coatings have satisfactory properties of low resistance, high transmittance and highest figure of merit for application in optoelectronics devices including flat displays, thin films transistors and solar cells as transparent conductive electrodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号