首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Removing and collecting heavy and rare metal ions from industrial effluents and waste aqueous solutions are improtant problems. Our previous studies showed that animal fibrous proteins (AFPs) such as hen eggshell membrane, chicken feather (CF), wool, and silk were stable and insoluble proteins and had an excellent ability to bind not only hard (Mn2+ and Fe3+) but alsosoft (Ag+, Au+, Pd2+, Pt2+, and Hg2+) acids from aqueous solutions. In this study, we syntheszed some adsorbents for transition (Cr6+, Mn2+, Co2+, Ni2+, and Cu2+) and heavy (Cd2+) metalions from AFPs (gelatin, CF, and wool) and plant polyphenols (lignin and tannin) by heating a mixture of AFPs and plant polyphenols under acidic conditions. In batch experiments, pH profile, time dependency, and isotherm analysis were performed to determine binding properties of adsorbents for transition and heavy metal ions. Columnexperiments were also performed to removecopper ion from aqueous solution. The results showed that the new adsorbents were effective for collecting and removing transition and heavy metal ions from aqueous solutions.  相似文献   

2.
Stability constants of macromolecular metallocomplexes of transition metal ions (Ag+, Cu2+, Ni2+, Fe3+) with sulfonated polymers in water and aqueous HCl and NaCl solutions were determined from quenching by transition metal ions of the luminescence of macromolecules labeled with luminescent groups.  相似文献   

3.
2-Thenoyltrifluoroacetone has been offered as a mobile carrier in organic phase for the transport and selective separation of yttrium from aqueous media using a liquid membrane system. Perceivably, the use of n-propylamine (PA) in the source phase enhances the transport of yttrium ions. The extraction and stripping conditions have entirely been evaluated and explained. The suggested method has been utilized for the separation of yttrium(III) from its binary mixtures with strontium(II) and some other cations such as Ni2+, Co2+, Ag+, Fe2+, Al3+, Cu2+, Hg2+and Cs+ in aqueous solutions of pH 5.4 in the presence of PA, while 1 M nitric acid was acting as a stripping agent in the receiving division. Cyanide ion and 5-sulfosalicylic acid have been used as masking agents to minimize the interferences from different transition metal ions and Al3+ in the source phase, respectively. 90Y in secular equilibrium with 90Sr in the source phase, was transferred to receiving phase and separated completely from its long-lived parent isotope. The activity of the transported 90Y was found to decay with a half-life 64.17 ± 0.05 h. The purity of yttrium-90 was comparable or better than the other applied liquid membrane systems for purification of yttrium-90.  相似文献   

4.
A nanocomposite consisting of multiwalled carbon nanotubes wrapped with hydroxyapatite (HA/MWCNTs) was used in the construction of a new composite paste electrode using an ionic liquid as the binder. The stable surface in aqueous solutions as well as the high sorptive behaviors towards heavy metal ions and the favorable charge transfer make the electrode highly efficient especially for stripping or adsorptive analysis. The analysis of Pb2+ as a model of heavy metal ions has been performed. Good sensitivity, detection limit, selectivity and reproducibility were obtained for the suggested sensor. The linear range of the electrode response covered four orders of magnitude (1 nM–10 µM), in two linear ranges. The obtained detection limit for Pb2+ was 2×10?11 M.  相似文献   

5.
Red onion skin is highly effective for binding heavy metal ions from aqueous solutions. Color leaching can be prevented and the physical characteristics of the substrate can be improved by treatment with formaldehyde in an acidic medium. Batch and column experiments have been conducted with Cu2+, Cd2+, Zn2+, Ni2+, Hg2+, and Pb2+. Almost quantitative removal of the metal ions from solution can be achieved by using columns of the treated onion skin. Competition of the various metal ions for the substrate has been investigated. The capacity of the substrate in the majority of the metal ions studied is well above 1 meq/g. The use of polymerized onion skin to remove heavy metal ions from domestic and industrial wastewater to safe levels has been recommended as a cheap and effective alternative for commercial ion-exchange resins.  相似文献   

6.
We demonstrate synthesis of water insoluble, novel copolymer PA1 from condensation of glyoxal dihydrazone and glyoxal dihydrazone bis(dithiocarbamate) monomers having high capacity to remove metal ions from aqueous solution. The presence of a high atomic percentage of nitrogen and sulfur atoms in PA1 leads to strong ligating ability with metal ions. The monomers and the polymer have been characterized by FTIR, UV–Visible spectroscopy, CHNS elemental analysis, NMR, MALDI-MS, and TG/DTA. As a proof of concept, the PA1 is tested for its ability to remove heavy metal ions Cu2+, Co2+, Fe2+, Ni2+, Mn2+, and CrO 7 2? from aqueous solutions. PA1 efficiently removed metals ions from the metal solutions. The highest absorption ability has been observed toward the iron salts where 0.969 g metal salt is absorbed by 1 g polymer. This study has implication for inexpensive and efficient polymer for purification of water.  相似文献   

7.
Nitrogen-containing cellulose derivatives hydrazinodeoxycellulose (HDC) and carboxyalkyl hydrazinodeoxycelluloses (α- and β-CAHDCs) were prepared from 6-chlorodeoxycellulose (CDC). Their adsorption of divalent transition metal ions was determined from dilute aqueous solutions and compared with that of aminoalkyl celluloses (AmACs) reported previously. HDC scarcely adsorbs metal ions in the pH range of 1–2, whereas α- and β-CAHDCs adsorb metal ions in this pH range. However, the adsorption of metal ions on HDC increases rapidly with increasing pH and HDC more effectively adsorbs metal ions than α- and β-CAHDCs in weakly acidic conditions. The ability to adsorb Cu2+ ions was in the order of AmAC (carbon number in the diamine moiety m = 2) > HDC > α-CAHDC > β-CAHDC in the weakly acidic region. These adsorbents selectively adsorb Cu2+ ions from the solutions containing other metal ions such as Mn2+, Co2+, and Ni2+, and the Irving–Williams series is obeyed in these adsorbent/metal ion systems. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3359–3363, 1997  相似文献   

8.
Nano-crystalline MnO2 has been synthesized by the method of alcoholic hydrolysis of KMnO4 and its potential as a sorbent for plutonium present in the low level liquid waste (LLW) solutions was investigated. The kinetic studies on the sorption of Pu by MnO2 reveal the attainment of equilibrium sorption in 15 h, however 90 % of sorption could be achieved within an hour. In the studies on optimization of the solution conditions for sorption, it was observed that the sorption increases with the pH of the aqueous solution, attains the maximum value of 100 % at pH = 3 and remains constant thereafter. The sorption was found to be nearly independent of the ionic strength (0.01–1.0 M) of the aqueous solutions maintained using NaClO4, indicating the inner sphere complexation between the Pu4+ ions and the surface sites on MnO2. Interference studies with different fission products, viz., Cs+, Sr2+ and Nd3+, revealed decrease in the percentage sorption with increasing pH of the suspension indicating the competition between the metal ions. However, at the metal ion concentrations prevalent in the low level liquid waste solutions, the decrease in the Pu sorption was only marginally decreased to 90 % at pH = 3, the decrease being more in the case of Nd3+ than that in the case of Cs+. This study, therefore, shows nano-crystalline MnO2 can be used as a sorbent for separation of Pu from LLW solutions.  相似文献   

9.
A new glucose-based C2-derivatized colorimetric chemo-sensor (L1) has been synthesized by a one-step condensation of glucosamine and 2-hydroxy-1-naphthaldehyde for the recognition of transition metal ions. Among the eleven metal ions studied, viz., Mg2+, Ca2+, Mn2+, Fe2+, Fe3+, Co2+, Ni2+, Cu2+, Zn2+, Cd2+ and Hg2+, L1 results in visual colour change only in the presence of Fe2+, Fe3+and Cu2+ in methanol. However, in an aqueous HEPES buffer (pH 7.2) it is only the Fe3+ that gives a distinct visual colour change even in the presence of other metal ions, up to a concentration of 280 ppb. The changes have been explained based on the complex formed, and the composition has been determined to be 2:1 between L1 and Fe3+ based on Job’s plot as well as ESI MS. The structure of the proposed complex has been derived based on HF/6-31G calculations.  相似文献   

10.
A 1D double‐helical coordination polymer {[Cd(pbbm)2]2(ClO4)4(H2O)2}n ( 1 ) was successfully constructed by the reaction of Cd(ClO4)2 · 6H2O with 1,1′‐(1,5‐pentanediyl)bis‐1H‐benzimidazole (pbbm). Interestingly, polymer 1 exhibits highly selective capacity for the ionic exchange of Zn2+ and Cu2+ over Co2+ and Ni2+ ions in the crystalline solid state when the crystals of 1 are immersed in the aqueous solutions of the perchlorate salts of Cu2+, Zn2+, Co2+, and Ni2+ ions, respectively, which indicates that central CdII ion exchange might be considered as being dominated by the coordination ability of metal ions to free functional groups, ionic radii of exchanged metal ions, and the solution concentration of adsorbed metal salts. The parent material‐ and ion‐exchange‐induced products are identified by FT‐IR spectroscopy, PXRD patterns as well as SEM and EDS measurements. In addition, the thermal stability of 1 was also investigated.  相似文献   

11.
Poly(hydroxamic acid) ligand was synthesized using ester functionalities of cellulose‐graft‐poly(methyl acrylate) copolymer, and products are characterized by Fourier transform infrared spectroscopy, field emission scanning electron microscopy, high‐resolution transmission electron microscopy, and X‐ray photoelectron spectroscopy analysis. The poly(hydroxamic acid) ligand was utilized for the sensing and removal of transition metal ions form aqueous solutions. The solution pH is found a key factor for the optical detection of metal ions, and the reflectance spectra of the [Cu‐ligand]n+ complex were observed to be the highest absorbance 99.5% at pH 6. With the increase of Cu2+ ion concentration, the reflectance spectra were increased, and a broad peak at 705 nm indicated that the charge transfer (π‐π transition) complex was formed. The adsorption capacity with copper was found to be superior, 320 mg g?1, and adsorption capacities for other transition metal ions were also found to be good such as Fe3+, Mn2+, Co3+, Cr3+, Ni2+, and Zn2+ were 255, 260, 300, 280, 233, and 223 mg g?1, respectively, at pH 6. The experimental data show that all metal ions fitted well with the pseudo‐second‐order rate equation. The sorption results of the transition metal ions onto ligand were well fitted with Langmuir isotherm model (R2 > 0.98), which implies the homogenous and monolayer character of poly(hydroxamic acid) ligand surface. Eleven cycles sorption/desorption process were applied to verify the reusability of this adsorbent. The investigation of sorption and extraction efficiency in each cycle indicated that this new type of adsorbent can be recycled in many cycles with no significant loss in its original detection and removal capability. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

12.
A convenient and versatile method was developed for the separation and detection of alkaline earth metal ions by ion chromatography with indirect UV detection. The chromatographic separation of Mg2+, Ca2+, and Sr2+ was performed on a carboxylic acid base cation exchange column using imidazolium ionic liquid/acid as the mobile phase, in which the imidazolium ionic liquid acted as an UV‐absorption reagent. The effects of imidazolium ionic liquids, detection wavelength, acids in the mobile phase, and column temperature on the retention of Mg2+, Ca2+, and Sr2+ were investigated. The main factors influencing the separation and detection were the background UV absorption reagent and the concentration of hydrogen ion in ion chromatography with indirect UV detection. The successful separation and detection of Mg2+, Ca2+, and Sr2+ within 14 min were achieved using the selected chromatographic conditions, and the detection limits (S /N = 3) were 0.06, 0.12, and 0.23 mg/L, respectively. A new separation and detection method of alkaline earth metal ions by ion chromatography with indirect UV detection was developed, and the application range of ionic liquids was expanded.  相似文献   

13.
Quenching of the luminescence of carboxyl-containing polymer molecules containing a luminescent marker by transition metal ions (Cu2+, Ni2+) is observed not only in aqueous and aqueous-salt solutions, but also in polar organic solvents (methanol, ethanol, dimethylformamide). In dilute solutions, quenching refl ects binding of metal ions with the polymer and changes in the degree of filling of the polymer carboxyl groups with transition metal ions quenching the luminescence. The equilibrium stability constant of the formed macromolecular metal complex in organic media can be quantitatively estimated from the quenching effect using the relationships that follow from the law of mass action. The formation and stability of Cu2+ and Ni2+ complexes with polymethacrylic acid in protic (methanol, ethanol) and aprotic (dimethylformamide) solvents at low polymer concentrations (0.4–0.02 mg mL–1) were studied using the quenching effect. In methanol, in contrast to ethanol and dimethylformamide, two mechanisms of binding of transition metal ions with different equilibrium stability constants of the complexes (\({K_{{1^{st}}}}\) > 3 × 109 and \({K_{{2^{st}}}}\) ≈ 106–104) were revealed. The infl uence exerted on the stability of the complexes and on the complexation mechanism by the nature and acidity of the organic solvent, polymer concentration, kind of the transition metal ion quenching the luminescence, and NaOH and HCl additions was studied. The results obtained demonstrate the efficiency of the luminescence method used and prospects for its further use for studying polymer systems containing transition metal ions in organic solvents.  相似文献   

14.
Heavy metal ion pollution has become a serious environmental problem. Herein, this study reports the synthesis of poly(ionic liquid) (PIL) membranes via in situ photo‐crosslinking of vinyl imidazole with both hydrophilic and hydrophobic ionic liquid monomers. The resultant amphiphilic polymer membranes are porous and exhibit high absorption capacity of metal ions (including Hg2+, Pb2+, Cu2+, Cd2+, and Zn2+) in both high (1000 mg L−1) and low (10 mg L−1) concentration metal ion solutions. These metal ionic absorption membranes are easily regenerated in acid solution and can be reused without significant decreases of absorption capacity after many cycles. These PIL membranes may have potential applications as eco‐friendly and safe heavy metal ion removal materials.

  相似文献   


15.
The extraction of three shape-persistent aromatic oligoamide macrocycles (cycloaramides) bearing either apolar or polar side chains at the periphery of the rings has been investigated towards some representative lanthanide and actinide ions, and alkali metal ions. The results from the liquid–liquid extraction of lanthanide and thorium ions from aqueous solutions into dichloromethane revealed remarkably high extractability of up to 99% and selectivity over alkali metal cations. The stoichiometry of the complex formed between the macrocycle and Eu3+ or Th4+ was determined to be 1:1.  相似文献   

16.
Bishnu Prasad Joshi 《Talanta》2009,78(3):903-1129
A novel fluorescent peptide sensor containing tryptophan (donor) and dansyl fluorophore (acceptor) was synthesized for monitoring heavy and transition metal (HTM) ions on the basis of metal ion binding motif (Cys-X-X-X-Cys). The peptide probe successfully exhibited a turn on and ratiometric response for several heavy metal ions such as Hg2+, Cd2+, Pb2+, Zn2+, and Ag+ in aqueous solution. The enhancements of emission intensity were achieved in the presence of the HTM ions by fluorescent resonance energy transfer (FRET) and chelation enhanced fluorescence (CHEF) effects. The detection limits of the sensor for Cd2+, Pb2+, Zn2+, and Ag+ were lower than the EPA's drinking water maximum contaminant levels (MCL). We described the fluorescent enhancement, binding affinity, and detection limit of the peptide probe for HTM ions.  相似文献   

17.
ABSTRACT

Guanidinylated carboxymethyl chitosan (GCMCS) was prepared via the guanidinylation of carboxymethyl chitosan (CMCS). A device employing the diffusive gradients for thin films (DGT) technique was made using a GCMCS aqueous solution as the binding agent and a cellulose acetate dialysis membrane (CADM) as the diffusion phase to measure labile Cu2+, Pb2+ and Cd2+ in water. The percentage uptake (U%) values of labile Cu2+, Pb2+ and Cd2+ in a synthetic water sample were almost consistent with the theoretical values at 101.6 ± 2.8%, 104.6 ± 6.1% and 95.9 ± 4.4%, respectively. The optimum pH ranges for the measurement of labile Cu2+, Pb2+ and Cd2+ were 3.0–7.0, 3.0–7.0 and 4.0–8.0, respectively. The ionic strength mainly affected the diffusion of metal ions in the CADM. The diffusion rates decreased with increasing concentrations of NaNO3 solutions. The application of GCMCS-DGT in natural water and industrial wastewater showed that dissolved organic carbon (DOC) only affects metal species, and the accurate determination of labile Cu2+, Pb2+ and Cd2+ can be achieved when the diffusion coefficients of these metal ions in the diffusion phase have been determined. GCMCS is suitable for DGT application as a chelating agent for metal ions.  相似文献   

18.
Summary The ion-exchange and sorption characteristics of new polymeric composite resins, prepared by gamma radiation were experimentally studied. The composite resins show high uptake for Co(II) and Eu(III) ions in aqueous solutions in a wide range of pH. The selectivity of the resins for Co(II) or Eu(III) species in presence of some competing ions and complexing agents (as Na+, Fe3+, EDTANa2, etc.) was compared. Various factors that could affect the sorption behavior of metal ions (Co(II) and Eu(III)) on the prepared polymeric composite resins were studied such as ionic strength, contact time, volume mass ratio.  相似文献   

19.
The thermodynamic properties of the mixed aqueous electrolyte of ammonium and alkaline earth metal nitrates have been studied using the hygrometric method at 25?°C. The water activities of these {yNH4NO3+(1?y)Y(NO3)2}(aq) systems with Y ≡ Ba2+, Mg2+ and Ca2+ were measured at total molalities ranging from 0.10 mol?kg?1 to saturation for different NH4NO3 ionic-strength fractions of y=0.20, 0.50 and 0.80. These data allow the calculation of osmotic coefficients. From these measurements, the ionic mixing parameters are determined and used to calculate the solute activity coefficients in the mixtures at different ionic-strength fractions. The results of these ternary solution measurements are compared with those for binary solutions of the alkaline earth nitrates of magnesium, calcium and barium with ammonium nitrates. The behavior of the aqueous electrolyte solutions containing mixtures of barium or calcium or magnesium with ammonium nitrates are correlated and show that ionic interactions are more important for the system containing Mg2+ than for Ca2+ or Ba2+. The trends are mainly due to the effects of the ionic size, polarizability and the hydration of the ions in these solutions.  相似文献   

20.
The complexation of lanthanide ions (Y3+, La3+, Ce3+, Pr3+, Nd3+, Sm3+, Gd3+, Tb3+, and Dy3+) with 3-[(1R)-1-hydroxy-2-(methylamino)ethyl]phenol hydrochloride was studied at different temperatures and different ionic strengths in aqueous solutions by Irving-Rossotti pH titration technique. Stepwise calculation, PKAS and BEST Fortran IV computer programs were used for determination of proton-ligand and metal-ligand stability constants. The formation of species like MA, MA2, and MA(OH) is considered in SPEPLOT. Thermodynamic parameters of complex formation (ΔG, ΔH, and ΔS) are also evaluated. Negative ΔG and ΔH values indicate that complex formation is favourable in these experimental conditions. The stability of complexes is also studied at in different solvent-aqueous (vol/vol). The stability series of lanthanide complexes has shown to have the “gadolinium break.” Stability of complexes decreases with increase in ionic strength and temperature. Effect of systematic errors like effect of dissolved carbon dioxide, concentration of alkali, concentration of acid, concentration of ligand and concentration of metal have also been explained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号