首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6 ng g−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.  相似文献   

2.
A novel kinetic chemiluminescent method using the stopped-flow mixing technique has been investigated for the rapid and sensitive determination of citrate and pyruvate. The method is based on a tris(2,2′-bipyridiyl)ruthenium(III) (Ru(bpy)33+) chemiluminescence (CL) reaction. Ru(bpy)33+ was generated in the mixing chamber by oxidising tris(2,2′-bipyridyl)ruthenium(II) with cerium(IV). After selecting the best operating parameters, calibration graphs were obtained over the concentration ranges 0.38-38 μg ml−1 and 8.7-1300 ng ml−1 for citrate and pyruvate, respectively. The limits of detection were 0.1 μg ml−1 for citrate and 0.3 ng ml−1 for pyruvate. Based on the differential rate of the chemiluminescent reaction corresponding to citrate and pyruvate, a very simple kinetic procedure was developed for the simultaneous determination of both compounds. Mixtures of citrate and pyruvate in ratios between 15:1 and 1.5:1 were satisfactorily resolved. The proposed method was successfully applied to the determination of citrate in pharmaceutical formulations, pyruvate in animal blood serum and both compounds in human urine.  相似文献   

3.
A highly sensitive and relatively interference-free spectrophotometric method for determination of calcium is described. The method is based on the reaction between calcium ions and carboxyazo-p-CH3 in aqueous citrate medium of pH 7, to form a blue complex with maximum absorption at 716 nm. The calibration is linear up to 0.12 μg ml−1 calcium with a repeatability (R.S.D.) of 1.0% at a concentration of 0.04 μg ml−1 (n=5). The molar absorptivity of the complex and Sandell’s sensitivity are 3.5×105 l mol−1 cm−1 and 0.11 ng cm−2, its 10σ limit of quantification and the 3σ limit of detection were found to be 0.3 ng ml−1 and 0.09 ng ml−1 respectively. The influence of reaction variables and the effect of interfering ions are studied; no interference was observed in clinical samples. The proposed method has been applied directly to the determination of calcium in clinical samples without the need for pre-concentration, masking metal ions and digesting samples.  相似文献   

4.
This paper presents two easy and selective methods for determining the active principles nafronyl (NFL) and naproxen (NAP), using a flow-through fluorescence optosensor based on the on-line immobilization on a nonionic-exchanger (Silica Gel, Davisil™ and Amberlite XAD 7, respectively) solid support. The determination was performed in 5×10−3 M HAc/NaAc buffer solution at pH 5 for NFL and 15×10−3 M glycine/HCl buffer solution at pH 2.5 for NAP at a working temperature of 20 °C. The fluorescence intensities were measured at λex/em=294/336 nm and λex/em=332/354 nm for NFL and NAP, respectively. The response time for these optosensors were practically instant, obtaining a linear concentration range between 0 and 700.0 ng ml−1 with a detection limit of 20.8 ng ml−1, an analytical sensitivity of 10.1 ng ml−1 and a standard deviation of 1.27% at a 500 ng ml−1 concentration level for NFL and a linear concentration range between 0 and 200.0 ng ml−1 with the detection limit of 13.3 ng ml−1, an analytical sensitivity of 6.0 ng ml−1 and a standard deviation of 3.52% at a 100 ng ml−1 concentration level for NAP. The proposed methods were satisfactorily applied to real samples (three commercial formulations and urine samples). The effects of the possible interferences were evaluated in all cases.  相似文献   

5.
Sun Y  Tang Y  Yao H  Zheng X 《Talanta》2004,64(1):156-159
A sensitive flow injection chemiluminescence (FL-CL) method for the determination of cephalosporin antibiotics, was developed. The method was based on that cephalosporin antibiotics could enhance the CL reaction of glyoxal and KMnO4 in sulfuric acid. Method development included the optimization of reagent concentrations and flow-rate. Under the optimized conditions, three cephalosporin antibiotics: cefalexin, cefadroxil, and cefazolin sodium, were determined. The detection limits of the method are 10 ng ml−1 cefalexin, 2 ng ml−1 cefadroxil, and 2 ng ml−1 cefazolin sodium. The method was successfully applied to the determination of three cephalosporin antibiotics in pharmaceutical preparations.  相似文献   

6.
《Analytica chimica acta》2002,459(2):235-243
For the first time, a solid sensing zone implemented with unsegmented flow analysis is described for the simultaneous determination of two pesticides, thiabendazole and warfarin. The system works as a simple and rapid spectrofluorimetric biparameter sensor. The sensor is based on the retention of the analytes on the sensing solid zone (octadecyl silane C18 gel) placed in the detection zone itself into a quartz flow-cell. A temporary sequentiation in the arrival of the analytes to the sensing zone is achieved by on line separation using a pre-column of the same gel placed just before the flow cell. Thiabendazole is determined the first (using methanol 30% (v/v) as carrier/elution solution) because it passes through the pre-column while warfarin is strongly retained in it. Then, warfarin is conveniently eluted from the pre-column (using methanol 50% (v/v) as carrier/elution solution) the intrinsic fluorescence peak height measured at an excitation wavelength of 309 nm and an emission wavelength of 368 nm is used as analytical signal. Using a low sample volume (40 μl), the analytical signal showed a very good linearity in the range 10-800 ng ml−1 and 2-40 μg ml−1 with detection limits of 2.35 ng ml−1 and 0.54 μg ml−1 for thiabendazole and warfarin, respectively. The sensor was satisfactorily applied to the determination of these two analytes in pesticides and pharmaceutical preparations.  相似文献   

7.
Jiang H  Hu B  Jiang Z  Qin Y 《Talanta》2006,70(1):7-13
A new method using a microcolumn packed with YPA4 chelating resin as solid-phase extractor has been developed for the separation and preconcentration of trace Hg prior to its measurement by GFAAS with Pd as a permanent modifier. Various parameters such as the amount of the modifier, pH, sample flow rate, the concentration and volume of eluent have been studied in order to find the best conditions for the determination of mercury. The detection limit of the method (3σ) for Hg based on an enrichment factor of 100 was 0.2 ng ml−1. A characteristic mass of 114 pg was obtained for mercury using Pd as a permanent modifier. The relative standard deviation was 2.8% at the 10 ng ml−1 level (n = 5). The method has been applied to the determination of trace mercury in environmental water samples and the recoveries for the spiked samples are in the range of 91-105%.  相似文献   

8.
Based on direct hapten coated format a competitive indirect enzyme-linked immunosorbent assay (ciELISA) for bisphenol A (BPA) was developed. Polystyrene surface was modified by 3-Aminopropyltriethoxysilane (APTES) to produce amino groups after H2SO4/HNO3-pre-treatment. 4,4-bis (4-hydroxyphenyl) valeric acid (BVA) which is analogue of BPA, was successfully immobilized on the surface of microtiter plates by N,N′-dicyclohexylcarbodiimide (DCC) method. The essential steps of the assay were optimized, especially blocking procedure which is key step to prevent unspecific binding of antibody. The results indicated that compared with hapten-protein coated format (IC50 = 176.67 ng ml−1, LOD = 15.90 ng ml−1), the direct hapten coated format (IC50 = 23.50 ng ml−1, LOD = 0.27 ng ml−1) could improve assay sensitivity and the detection ranges were 2.30 ng∼157.60 ng ml−1 with good signal reproducibility (P value > 0.05) after careful optimization of assay conditions. Tap water samples and seawater samples were spiked with a known amount of BPA and measured by ciELISA. The average recoveries were between 70 and 142%. As far as we are aware this is the most sensitive ELISA for BPA yet reported.  相似文献   

9.
A procedure for the determination of Imidacloprid and its main metabolites was set up by means of liquid chromatography with an electrochemical detector and post-column photochemical reactor (LC--ED). Sample clean-up was developed for bees, filter paper and maize leaves. Chromatographic conditions were based on a reversed-phase C-18 column operated by phosphate buffer 50 mM/CH3CN (80/20, v/v) at pH 2.9. Detection of Imidacloprid and its metabolites was performed at a potential of 800 mV after photoactivation at 254 nm. Compared to conventional techniques such as gas chromatography/mass spectrometry (GC/MS) or LC coupled to other detectors, the present method allows simultaneous trace-level determination of both Imidacloprid (0.6 ng ml−1) and its main metabolites (2.4 ng ml−1).  相似文献   

10.
A sensitive and simple solid-phase preconcentration procedure for enrichment of cadmium prior to analysis by flame atomic absorption spectrometry (FAAS) is described. The method is based on the adsorption of cadmium as CdI42− on naphthalene-methyltrioctylammonium chloride adsorbent, elution by nitric acid and subsequent determination by FAAS. The effect of pH, iodide concentration, sample flow rate, volume of the sample and diverse ions on the recovery of the analyte was investigated and optimum conditions were established. A preconcentration factor of 40 was achieved using the optimum conditions. The calibration graph was linear in the range 1-100 ng ml−1 cadmium in the initial solution. The detection limit based on the 3Sb criterion was 0.6 ng ml−1 and the relative standard deviations (RSD) were 3.9 and 1.05% for 5 and 40 ng ml−1, respectively (n=8). The method was successfully applied to the determination of cadmium added to river, tap and Persian Gulf water samples.  相似文献   

11.
Fenitrooxon [O,O-dimethyl-O-(4-nitro-m-tolyl)phosphate] is the major metabolite of the organophosphorus insecticide fenitrothion, and 3-methyl-4-nitrophenol is its major degradation product. In the present study, we describe the development of an indirect competitive enzyme-linked immunosorbent assay (ELISA) for the detection of these compounds in water samples based on a group-specific polyclonal antiserum generated with a “bifunctional hapten”, which has two functions: the conventional function of producing an antibody against an antigen and a unique function of promoting the production of the antibodies in rabbit. For application to water samples, the influence of several factors such as organic solvent, pH, and detergent was studied. Under optimized conditions, the quantitative working range of the fenitrooxon ELISA was 0.71-27 ng ml−1 with a limit of detection (LOD) of 0.32 ng ml−1, and the fenitrooxon concentration giving 50% reduction of the maximum signal (IC50) was 4.2 ng ml−1. The quantitative working range of the 3-methyl-4-nitrophenol ELISA was 0.67-27 ng ml−1 with a LOD of 0.38 ng ml−1 and an IC50 of 3.7 ng ml−1. No significant matrix effect originating from the water sample (river water, tap water, purified water, and bottled water) was shown by addition of Tween 20 to the assay buffer. Water samples spiked with each of these compounds at 1, 5, 10, and 20 ng ml−1 were directly analyzed without extraction and clean-up by the proposed ELISA. The mean recovery was 100.9%, and the mean coefficient of variation (CV) was 7.7% for the fenitrooxon ELISA and for the 3-methyl-4-nitrophenol ELISA, the mean recovery was 97.6%, and the mean CV was 7.2%. The proposed ELISA allows precise and accurate determination of these compounds in water at such low levels.  相似文献   

12.
An electrochemiluminescence (ECL)-based method for rapid and sensitive detection of acridinium ester in neutral solution was described. Strong ECL emission was observed when a positive voltage over 2.0 V (versus Ag/AgCl) was applied to the working electrode (Pt) immersed in the acridinium ester solution of 2.0 mol l−1 KNO3 (pH 7.0). The possible ECL mechanism was discussed. It was proposed that the ECL emission came out of N-methylacridone, the oxidization product of acridinium ester by the nascent oxygen generated on the surface of working electrode in the course of oxidization of water. Other influenced factors including the electrochemical parameters, the ECL reaction medium and pH value, were investigated in detail. Under the optimal conditions, ECL intensity has a linear relationship with the concentration of acridinium ester in the range of 0.24-96 ng ml−1 (r=0.9999). The relative standard deviation for 24 ng ml−1 acridinium ester was 4.6% (n=11). The limit of detection was 0.16 ng ml−1.  相似文献   

13.
A highly sensitive and specific enzyme-linked immunosorbent assay (ELISA) method has been developed for the determination of 20(S)-protopanaxatriol (PPT), one of the major aglycones of dammarane-type ginseng saponins. Polyclonal antibodies raised against ginsenoside F1 (GF1)-bovine serum albumin showed high reactivities to PPT and GF1, whereas they exhibited minor or even no cross-reactivities to other ginsenosides and protopanaxadiol (0.19%). The working range of this method extends from 50 pg ml−1 to 20 ng ml−1 of PPT. The assay reported here has been validated against an HPLC technique using PPT-containing samples and was shown to correlate closely (γ=0.993). This ELISA could be a useful tool for the determination of PPT contained in biological fluids and plant materials.  相似文献   

14.
Masson JF  Obando L  Beaudoin S  Booksh K 《Talanta》2004,62(5):865-870
A sensor to detect markers of cardiac muscle cell death at less than 3 ng ml−1 and in less than 10 min has been achieved. This fiber-optic-based surface plasmon resonance (SPR) sensor is being applied to detect myoglobin (MG) and cardiac troponin I (cTnI) in HEPES buffered saline solution. An in vivo sensor for the early detection of the onset of myocardial infarction (MI) will greatly enhance the patient care. MG and cTnI are two biological markers released from dying cardiac muscle cells during an MI, and their detection at biologically-relevant levels can be diagnostic of MI. Antibodies specific to an antigen of interest are attached to a carboxymethylated dextran layer on a gold SPR surface. With the method developed, the lower limit of detection (LOD) for MG is 2.9 ng ml−1 at 25 °C. The biological level for MG reaches 15-30 ng ml−1 in patient blood after myocardial damage. A Langmuir adsorption isotherm describes the binding well. For cTnI, a lower detection limit of 1.4 ng ml−1 was achieved in preliminary tests. cTnI levels are in the range of 1-3 ng ml−1 in patient blood after myocardial damage. The antibody reaction with the carboxymethylated dextran surface was optimized by modifying the reaction pH, the temperature, and the dextran chain length.  相似文献   

15.
A sensitive procedure has been developed for selenium and tellurium determination in milk by hydride generation atomic fluorescence spectrometry (HG-AFS) after microwave-assisted sample digestion. The method provides sensitivity values of 1591 and 997 fluorescence units ng−1 ml−1 with detection limits of 0.005 and 0.015 ng ml−1 for Se and Te, respectively. The application of the developed methodology to the analysis of cow milk samples of the Spanish market evidenced the presence of concentration ranges from 11.1 to 26.0 ng ml−1 for Se, and from 1.04 to 9.7 ng ml−1 for Te having found a good comparability with data obtained after dry-ashing of samples.  相似文献   

16.
A simple and sensitive kinetic method for the determination of traces of mercury (70-760 ng ml−1) based on its inhibitory effect on the addition reaction between methyl green and sulfite ion is proposed. The reaction was monitored spectrophotometrically by measuring the decrease in absorbance of methyl green at 596 nm between 2 and 4 min using a fixed time method. Artificial neural networks with back propagation algorithm coupled with an orthogonal array design were applied to the modeling of the proposed kinetic system and optimization of experimental conditions. An orthogonal design was utilized to design the experimental protocol, in which pH, concentration of sulfite, temperature, and concentration of methyl green were varied simultaneously. Optimum experimental conditions in term of sensitivity were generated by using ANNs. The rate of decrease in absorbance is inversely proportional to the concentration of Hg(II) over entire concentration range tested (100-550 ng ml−1) with a detection limit of 45 ng ml−1 and a relative standard deviation at 200-400 ng ml−1 Hg(II) of 3.2% (n=5). A simple preconcentration step improved the limit of detection and linear dynamic range of the method to about 8 and 12-760 ng ml−1, respectively, by about 10 times enrichment of mercury between 12 and 75 ng ml−1. The method was based on enrichment of Hg(II) from dilute samples on an anionic ion exchanger fixed on a plastic strip and was applied to the determination of Hg(II) in environmental samples with satisfactory results.  相似文献   

17.
Highly sensitive catalytic determination of molybdenum   总被引:1,自引:0,他引:1  
A novel, highly sensitive, selective, and simple kinetic method was developed for the determination of Mo(VI) based on its catalytic effect on the oxidation of 1-amino-2-naphthol-4-sulfonic acid (ANSA) with H2O2. The reaction was followed spectrophotometrically by tracing the oxidized product at 465 nm after 30 min of mixing the reagents. The optimum reaction conditions were: 10 mmol l−1 ANSA, 50 mmol l−1 H2O2, 100 mmol l−1 acetate buffer of pH 5.0 ± 0.05 and at 40 °C. Addition of 200 μg ml−1 diethylenetriaminepentaacetic acid (DTPA) conferred high selectivity for the proposed method. Following the recommended procedure, Mo(VI) could be determined with a linear calibration graph up to 2.5 ng ml−1 and a detection limit, based on the 3Sb-criterion, of 0.027 ng ml−1. The unique sensitivity and selectivity of the implemented method allowed its direct application to the determination of Mo(VI) in natural and industrial waste water. The method was validated by comparison with the standard ETAAS method. Moreover, published catalytic-spectrophotometric methods for the determination of molybdenum were reviewed.  相似文献   

18.
A highly sensitive catalytic quenching spectrofluorimetric method was described for the determination of V(V) based on its catalytic effect on the oxidation of 1,8-diaminonaphthalene by potassium bromate with Tiron as an activator in weakly acidic medium and the reaction mechanism was investigated. The reaction was followed spectrofluorimetrically by measuring the fluorescence intensity of 1,8-diaminonathphlene (DAN) (λex=356 nm, λem=439 nm) at a fixed time of 5 min from initiation of the reaction. Under the optimum conditions, vanadium(V) can be determined in the range 0.05-50.0 ng ml−1 with a S.D.=0.024 for 15 times measurements. The detection limit of the method was down to 0.0088 ng ml−1 and the catalytic reaction activation energy was found to be 43.92 kJ mol−1. The proposed method was tested for the determination of vanadium(V) in rice and natural water samples.  相似文献   

19.
In pH 6.0-11.2 Britton-Robinson buffer solution, binding of heparin with crystal violet (CV) can result in a significant enhancement of resonance Rayleigh scattering (RRS) and resonance non-linear scattering, such as frequency doubling scattering (FDS) and second-order scattering (SOS). Their maximum scattering wavelengths, λex/λem, appear at 492 nm/492 nm for RRS, 984 nm/492 nm for FDS and 492 nm/984 nm for SOS, respectively. The optimum conditions of the reaction, the influencing factors and the relationship between the three scattering intensities and the concentration of heparin have been investigated. New methods for the determination of trace amounts of heparin based on the RRS, FDS and SOS methods have been developed. The methods exhibit high sensitivities, the detection limit for heparin is 2.9 ng ml−1 for the RRS method, 3.5 ng ml−1 for the FDS method and 3.3 ng ml−1 for the SOS method. The methods have good selectivity and were applied to the determination of heparin in heparin sodium injection samples with satisfactory results.  相似文献   

20.
This paper describes a highly sensitive, selective catalytic-kinetic-spectrophotometric method for the determination of copper(II) concentration as low as 6 ng ml−1. The method is based on the catalytic effect of copper(II) on the oxidation of citric acid by alkaline hexacyanoferrate(III). The reaction was followed by measuring the decrease in absorbance of hexacyanoferrate(III) at 420 nm (λmax of [Fe(CN)6]3−,  = 1020 dm3 mol−1 cm−1). The dependence of rate of the indicator reaction on the reaction variables has been studied and discussed to propose a suitable mechanism to get a relation between the reaction rate and [Cu2+]. A fixed time procedure has been used to obtain a linear calibration curve between the initial rate and lower [Cu2+] or log[Cu2+] in the range 1 × 10−7 to 4 × 10−4 mol l−1 (6.35-25,400 ng ml−1). The detection limit has been calculated to be 4 ng ml−1. The maximum average error is 3.5%. The effect of the presence of various cations, commonly associated with copper(II) and some anions has also been investigated and discussed. The proposed method is sensitive, accurate, rapid and inexpensive compared to other techniques available for determination of copper(II) in such a large range of concentration. The new method has been successfully applied for the determination of copper(II) in various samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号