共查询到20条相似文献,搜索用时 15 毫秒
1.
Stacia E. Dancsak Sidnei G. Silva Joaquim A. Nóbrega Bradley T. Jones George L. Donati 《Analytica chimica acta》2014
High levels of sodium and potassium can be present in biodiesel fuel and contribute to corrosion, reduced performance and shorter engine lifetime. On the other hand, trace amounts of chromium and vanadium can increase the emission of pollutants during biodiesel combustion. Sample viscosity, immiscibility with aqueous solutions and high carbon content can compromise biodiesel analyzes. In this work, tungsten filaments extracted from microscope light bulbs are used to successively decompose biodiesel's organic matrix, and atomize and excite the analytes to determine sodium, potassium, chromium and vanadium by tungsten coil atomic emission spectrometry (WCAES). No sample preparation other than simple dilution in methanol or ethanol is required. Direct analysis of 10-μL sample aliquots using heating cycles with less than 150 s results in limits of detection (LOD) as low as 20, 70, 70 and 90 μg kg−1 for Na, K, Cr and V, respectively. The procedure's accuracy is checked by determining Na and K in a biodiesel reference sample and carrying out spike experiments for Cr and V. No statistically significant differences were observed between reference and determined values for all analytes at a 95% confidence level. The procedure was applied to three different biodiesel samples and concentrations between 6.08 and 95.6 mg kg−1 for Na and K, and between 0.22 and 0.43 mg kg−1 for V were obtained. The procedure is simple, fast and environmentally friendly. Small volumes of reagents, samples and gases are used and no residues are generated. Powers of detection are comparable to other traditional methods. 相似文献
2.
We report here, for the first time, application of batch injection analysis (BIA) with amperometric detection for determination of the phenolic antioxidant butylated hydroxyanisole (BHA) in biodiesel. A sample plug was directly injected onto a boron-doped diamond electrode immersed in 50% v/v hydroethanolic solution with 0.1 mol L−1 HClO4 using an electronic micropipette. Importantly, the only preparation step required for biodiesel analysis is dilution in the same hydroethanolic electrolyte solution. Our proposed method has several advantages for routine biodiesel analysis, including: a low relative standard deviation between injections (0.29%, n = 20), high analytical frequency (120 h−1), adequate recovery values (93-101%) for spiked samples, satisfactory accuracy (based on comparative determinations by high-performance liquid-chromatography), and a low detection limit (100 ng of BHA per g of biodiesel). Finally, our method can be adapted for the determination of other antioxidants in biodiesel samples. 相似文献
3.
Reinaldo Calixto de Campos Carolina Lyrio T. CorreiaFlavia Vieira Tatiana D. Saint'PierreAna Cristina Oliveira Rodrigo Gonçalves 《Spectrochimica Acta Part B: Atomic Spectroscopy》2011,66(5):352-355
The direct determination of P in biodiesel by high-resolution continuum source graphite furnace atomic absorption spectrometry has been investigated. A slow drying stage proved to be essential for good repeatability. Optimization was performed by a D optimal planning. The atomization temperature and modifier composition were the most relevant parameters. Thus, using a mixture of Pd (30 μg) and Mg(NO3)2 (20 μg) as the modifier, previously deposited onto the platform of the graphite tube and dried, a five step drying stage, and pyrolysis and atomization temperatures of 1000 and 2700 °C, respectively, a limit of detection of 0.5 μg g− 1 was obtained. The analysis of biodiesel of different origins confirmed that external calibration with organic P standard solutions, diluted in P-free biodiesel, could be used. In this way, excellent agreement between the found and expected results was observed in the analysis of an ANP interlaboratorial exercise sample. 相似文献
4.
A methodology based in flow analysis and membrane-based extraction has been applied to the determination of methanol in biodiesel samples. A hydrophilic membrane was used to perform the liquid-liquid extraction in the system with the organic sample fed to the donor side of the membrane and the methanol transfer to an aqueous acceptor buffer solution. The quantification of the methanol was then achieved in aqueous solution by the combined use of immobilised alcohol oxidase (AOD), soluble peroxidase and 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS). The optimization of parameters such as the type of membrane, the groove volume and configuration of the membrane unit, the appropriate organic solvent, sample injection volume, as well as immobilised packed AOD reactor was performed. Two dynamic analytical working ranges were achieved, up to 0.015% and up to 0.200% (m/m) methanol concentrations, just by changing the volume of acceptor aqueous solution. Detection limits of 0.0002% (m/m) and 0.007% (m/m) methanol were estimated, respectively. The decision limit (CCα) and the detection capacity (CCβ) were 0.206 and 0.211% (m/m), respectively. The developed methodology showed good precision, with a relative standard deviation (R.S.D.) <5.0% (n = 10). Biodiesel samples from different sources were then directly analyzed without any sample pre-treatment. Statistical evaluation showed good compliance, for a 95% confidence level, between the results obtained with the flow system and those furnished by the gas chromatography reference method. The proposed methodology turns out to be more environmental friendly and cost-effective than the reference method. 相似文献
5.
A flow system designed with solenoid micro-pumps is proposed for fast and greener spectrophotometric determination of free glycerol in biodiesel. Glycerol was extracted from samples without using organic solvents. The determination involves glycerol oxidation by periodate, yielding formaldehyde followed by formation of the colored (3,5-diacetil-1,4-dihidrolutidine) product upon reaction with acetylacetone. The coefficient of variation, sampling rate and detection limit were estimated as 1.5% (20.0 mg L−1 glycerol, n = 10), 34 h−1, and 1.0 mg L−1 (99.7% confidence level), respectively. A linear response was observed from 5 to 50 mg L−1, with reagent consumption estimated as 345 μg of KIO4 and 15 mg of acetylacetone per determination. The procedure was successfully applied to the analysis of biodiesel samples and the results agreed with the batch reference method at the 95% confidence level. 相似文献
6.
The proposed analytical method allows for simultaneous determination by GC using a programed temperature vaporization injector and a flame ionization detector of the main reaction components (i.e. glycerol, methyl esters, mono‐, di‐, and triacylglycerols) in the reaction mixture during biodiesel production. The suggested method is convenient for the rapid and simple evaluation of the kinetic data gained during the transesterification reaction and, also partially serves as an indicator of the quality of biodiesel and mainly, as the indicator of the efficiency of the whole production process (i.e. the conversion of triacylglycerols to biodiesel and its time progress). The optimization of chromatographic conditions (e.g. the oven temperature program, injector setting, amount of derivatization reagent, and the derivatization reaction time) was performed. The method has been validated with crude samples of biodiesel made from waste‐cooking oils in terms of linearity, precision, accuracy, sensitivity, and limits of detection and quantification. The results confirmed a satisfactory degree of accuracy and repeatability (the mean RSDs were usually below 2%) necessary for the reliable quantitative determination of all components in the considerable concentration range (e.g. 10–1100 μg/mL in case of methyl esters). Compound recoveries ranging from 96 to 104% were obtained. 相似文献
7.
《Colloids and surfaces. B, Biointerfaces》2010,80(2):409-414
This paper reports an electroanalytical method developed for determining the antioxidant tert-butylhydroquinone (TBHQ) in biodiesel, based on the enhancement effect of cetyltrimethylammonium bromide (CTAB). In pH 6.5 Britton–Robinson buffer, a poorly defined oxidation peak was observed for TBHQ at a carbon paste electrode (CPE). In the presence of low concentrations of CTAB, however, the oxidation peak current was markedly increased. Several parameters were studied and optimized for the development of this methodology, and under optimal conditions the oxidation peak current was proportional to TBHQ concentration in the range of (1.05–10.15) × 10−6 mol L−1, with limits of detection and quantification of 7.11 × 10−8 mol L−1 and 2.37 × 10−7 mol L−1, respectively, by linear sweep voltammetry (LSV). The method was applied to TBHQ determination in soybean biodiesel samples. The results were satisfactory in comparison with those obtained using high-performance liquid chromatography (HPLC). 相似文献
8.
《Electroanalysis》2018,30(8):1740-1749
The use of multiple‐pulse amperometry (MPA) for the determination of narrow therapeutic index (NTI) drugs using batch injection analysis (BIA) with carbon screen‐printed electrodes (SPE) is proposed, seeking to develop a practical and low‐cost analysis kit for application in routine quality control of these drugs. The electrochemical behaviors of aminophylline, carbamazepine, clindamycin, colchicine, minoxidil, prazosin, procainamide, theophylline, warfarin and verapamil were evaluated in different electrolytes, but just one, the 0.1 mol L−1 phosphate buffer, pH 7.0, was chosen for determination of all the analytes. The amperometric detection was optimized as a function of the best oxidation potential for carbon SPE for each analyte, which was in a range from 0.7 to 1.1 V. The injection conditions were determined as a function of the velocity and the volume injected by the BIA system, which were 92.5 μL s−1 and 100 μL, respectively. Under these conditions, a good repeatability (RSD<3 %), high analytical frequency (>215 determinations per hour), large linear ranges and low LOD (<0.42 μmol L−1) for all the NTI drugs were obtained. Furthermore, the proposed method provided an easy qualitative analysis of the investigated analytes using MPA detection. The addition‐recovery studies in pharmaceutical samples containing NTI drugs and the comparison with official methods showed that the proposed analysis Kit is a very fast, simple and efficient alternative for quantification of these analytes. 相似文献
9.
An analytical procedure for direct introduction of biodiesel samples into an inductively coupled plasma mass spectrometer (ICP-MS) by using microemulsion for sample preparation was developed here. Cadmium, Co, Cu, Mn, Ni, Pb, Ti, and Zn were determined in biodiesel microemulsified samples prepared from different oleaginous sources (African palm, castor beans, palm, soybeans and an unknown oleaginous). Microemulsions were prepared using 0.25 mL Triton X-100, 0.25 mL 20% v v− 1 HNO3, 0.50 mL biodiesel sample and 4.0 mL n-propanol. Argon-oxygen mixture was added to the plasma as auxiliary gas for correcting matrix effects caused by the high carbon load due to biodiesel microemulsions. The oxygen gas flow rate was set in 37.5 mL min− 1. The accuracy of the developed procedure was evaluated by applying addition-recovery experiments for biodiesel samples from different sources. Recoveries varied from 76.5 to 116.2% for all analytes but Zn in castor beans biodiesel sample (65.0 to 76.2%). Recoveries lower than 86.6% were obtained for palm biodiesel sample, probably due to matrix effects. Detection limits calculated by using oxygen in the composition of the auxiliary gas added to the plasma were higher than those calculated without using it, probably due to the highest formation of oxides. Despite oxides formation, best analytical performance was reached by using oxygen as auxiliary gas and by proper correction of transport interferences. The developed procedure based on microemulsion formation was suitable for direct introduction of biodiesel samples in ICP-MS. 相似文献
10.
Summary The methanol and free glycerol content of vegetable oil methyl esters used as diesel fuel (biodiesel) is very important in describing the quality of this fuel and is therefore limited by specifications. A previously described GLC method for the determination of free glycerol in biodiesel has been further developed and also allows the simultaneous determination of methanol. Sample preparation includes dissolving in dimethylformamide, silylation with bis-trimethylsilyltrifluoracetamide (BSTFA) and separation on a methylsilicone fluid, coated-capillary column using either FID or MS-detection. Ethanol and 1,4-butanediol were used as internal standards. Both detection systems show sufficient sensitivity for concentrations relevant to biodiesel samples. The recovery was tested using a RME-sample containing known amounts of methanol and glycerol. 相似文献
11.
This work reports the highly‐sensitive amperometric determination of free glycerol in biodiesel at a gold electrode adapted in a flow‐injection analysis (FIA) cell. The amperometric method involved the continuous application of three sequential pulses to the working electrode (+250 mV, +700 mV, and ?200 mV, for 100 ms each). This sequence of potential pulses eliminated electrode passivation and dramatically increased the analytical signal. The proposed FIA‐amperometric method presented low relative standard deviation between injections (1.5 %, n=15), high analytical frequency (85 h?1), satisfactory recovery values (93–118 %) for spiked samples, wide linear range (from 1 to 300 µmol L?1), and low detection limit (0.5 µmol L?1). 相似文献
12.
The use of microemulsion for determination of sodium and potassium in biodiesel by flame atomic absorption spectrometry 总被引:3,自引:0,他引:3
A new method for F AAS determination of sodium and potassium in biodiesel using water-in-oil microemulsion as sample preparation is proposed. The method was investigated for biodiesel produced from different sources, as soybean, castor and sunflower oil and animal fat and was also applied for vegetable oils. The optimized condition for microemulsion formation was 57.6% (w/w) of n-pentanol, 20% (w/w) of biodiesel or vegetable oil, 14.4% (w/w) of Triton X-100 and 8% (w/w) of water (aqueous standard of KCl or NaCl in/or diluted HNO3). The optimized instrumental parameters were: aspiration rate of 2 mL min−1 and the flame composition of 0.131 of C2H2/air ratio. For comparison purpose, the determination of sodium and potassium were also carried out according to European norms (EN 14108 and EN 14109, respectively). These norms are applied for determination of sodium and potassium in fatty acid methylic ester samples and consist in the sample dilution using organic solvent and determination by F AAS. The stability of microemulsified aqueous standards and samples was investigated and it was found to be stable for at least 3 days while the organic standard diluted with xylene showed a decrease around of 15% in the analytical signal in 1 h. The limits of detection were 0.1 μg g−1 and 0.06 μg g−1 and the obtained characteristic concentrations were 25 μg L−1 and 28 μg L−1 for sodium and potassium, respectively. The proposed method presented two times better limits of detection and better precision (0.4–1.0%) when compared with the dilution technique (1.5–4.5%). The accuracy of the method was evaluated through recovery tests and comparison with the results obtained by dilution technique. The recoveries ranged from 95% to 115% for biodiesel and 90% to 115% for vegetable oil samples. Comparison between the results obtained for biodiesel by both methods showed no significant differences at the 95% confidence level according to a Student's t-test. This study shows that the proposed method based on microemulsion as sample preparation can be applied as an efficient alternative for sodium and potassium determination in biodiesel samples. 相似文献
13.
M. Goreti F. Sales M. Carmo V. F. Vaz Cristina Delerue-Matos Sofia A. A. Almeida M. Fátima Barroso Helder A. O. Ferreira 《International journal of environmental analytical chemistry》2013,93(1):37-49
Abstract The sorption of pentachlorophenol (PCP) onto the aquatic humic matter (HM) for very wide concentration range (60 ng PCP/L - 1 mg PCP/L) was investigated. The binding affinity increased significantly with the acidity of the solution. The dissolved organic carbon (DOC) normalized sorption coefficients (log KOC) of PCP were 3.39 at pH 3, 3.19 at pH 5.5 and 3.01 at pH 7. The binding of PCP took place via a two step binding mechanism: the rapid first step was followed by a second much slower one indicating that the surface of the HM is very heterogeneous containing binding sites with different binding affinities. It was possible to obtain a “fully saturated” HM-PCP adduct (also all possible micro-voids of the HM were occupied) in a very high PCP concentration. The log KOC value for the whole concentration range was slightly smaller than that obtained under very low PCP concentration level. The Langmuir isotherm was the most suitable for the whole concentration range of PCP, whereas the Freundlich model was the most suitable for the low concentration range of PCP. The dissimilarities between different sorption models were as a whole marginal and thus it is possible without significant loss of information to describe the PCP sorption with a linear model. The results verify that the conventional humic (HA) and fulvic (FA) acid type humic solutes of fresh waters account for the main part of the PCP sorption. 相似文献
14.
Mirela Ghisi Daiane P.C. Quadros Edmar P. Marques Aldaléa L.B. Marques 《Microchemical Journal》2011,98(1):62-65
A simple analytical procedure for the determination of Cu and Fe in biodiesel samples by electrothermal atomic absorption spectrometry is proposed. An aliquot of the sample is simply mixed with tetramethylammonium hydroxide (TMAH) and heated to 90 °C for 5 min. Pyrolysis and atomization temperatures were optimized through pyrolysis and atomization curves. The high pyrolysis temperature adopted, of 1000 °C, certainly helped minimizing potential interferences. Even though, calibration should be carried out with aqueous standard solutions in the presence of the TMAH. The detection limits (3 s, n = 10), in the sample, were quite low 15 ng g−1 and 24 ng g−1 for Cu and Fe, respectively. Seven biodiesel samples, produced from different raw materials, including vegetable seed, frying oil and animal fat were analyzed. Accuracy was validated by applying the recovery test to two samples, enriching the samples with two concentration levels (recoveries from 105% to 120%). The precision, expressed by the relative standard deviation was less than 3% for Cu and less than 7% for Fe. Copper could be quantified in two and Fe in three of the seven samples. The biodiesel sample from fodder turnip was especially rich in the analytes in comparison to the other samples. 相似文献
15.
Neuhaus W Novalin S Klimacek M Splechtna B Petzelbauer I Szivak A Kulbe KD 《Applied biochemistry and biotechnology》2006,134(1):1-14
Biodiesel (fatty acid methyl esters) was produced by transesterification of triglycerides (triolein) present in olive oil with methanol and Novozym435. The effect of the molar ratio of methanol to triolein, semibatch (stepwise addition of methanol) vs batch operation, enzyme activity, and reaction temperature on overall conversion was determined. Stepwise methanolysis with a 3:1 methanol to triolein molar ratio and an overall ratio of 8:1 gave the best results. The final conversion and yield of biodiesel were unaffected by initial enzyme concentrations greater than 500 U/mL olive oil. The optimum reaction temperature was 60 degrees C. Comparison of conversion data between a test-tube scale reactor and a 2-L batch reactor revealed that the difference in conversion was within 10%. Experiments were also carried out with used cooking oil; the conversion with used cooking oil was slightly lower but no major differences were observed. The efficacy of Novozym435 was determined by reusing the enzyme; although the enzyme's relative activity decreased with reuse, it still retained 95% of its activity after five batches and more than 70% after as many as eight batches. 相似文献
16.
Ramón Piloto Rodríguez Roger Sierens Sebastian Verhelst 《Journal of Thermal Analysis and Calorimetry》2009,96(3):897-901
The purpose of this work is to evaluate the thermal and kinetic behavior of biodiesel derived from soybean and higuereta oils.
The thermogravimetric profiles of biodiesels indicated one step associated with decomposition of the ethyl esters. The thermal
profiles were compared with reference diesel. Kinetic parameters were obtained by thermal analysis, estimating reaction order,
pre-exponential factor and activation energy. For estimation of the kinetic parameters the Coats & Redfern method was used.
The selection criterion of best fit was based on the correlation coefficient of the linear regression and the compensation
effect of the kinetic parameters. 相似文献
17.
Frank-Michael Matysik 《Mikrochimica acta》2008,160(1-2):1-14
Amperometric and conductometric detection are currently the two major electrochemical detection modes in capillary and chip
electrophoresis. The ease of miniaturization and integration of electrochemical detection elements offers a high potential
for the development of portable analytical devices based on electromigrative separations. The challenges and basic concepts
of both detection principles in the context of capillary/chip electrophoresis are shortly introduced and milestones of the
methodical developments are summarized from a historical perspective. Recent advances and applications are discussed with
more detail. Particular attention is paid to new trends in this area of research such as measurements in short capillaries
and the enormous progress and increased popularity of contactless conductivity detection.
Correspondence: Frank-Michael Matysik, Institute of Analytical Chemistry, University of Leipzig, Linnéstr. 3, D-04103 Leipzig,
Germany 相似文献
18.
This article reviews the development in ion amperometry at the interface between two immiscible electrolyte solutions (ITIES) in view of realizing the amperometric ion-selective electrode (ISE). The concept of polarizability of ITIES in a multi-ion system is outlined. Principle aspects of ion amperometry at ITIES are discussed including the use of amperometry as a tool for the clarification of the ion sensing mechanism, and for determining the concentrations of ions in the solution. The reference is made to recent amperometric measurements at the supported liquid membrane (SLM) and polymer composite liquid membranes (PCLM), which, together with the micro-hole supported ITIES, appear to be particularly suitable for realization of the amperometric ISE. 相似文献
19.
Veras G Gomes Ade A da Silva AC de Brito AL de Almeida PB de Medeiros EP 《Talanta》2010,83(2):565-568
This article describes the classification of biodiesel samples using NIR spectroscopy and chemometric techniques. A total of 108 spectra of biodiesel samples were taken (being three samples each of four types of oil, cottonseed, sunflower, soybean and canola), from nine manufacturers. The measurements for each of the three samples were in the spectral region between 12,500 and 4000 cm−1. The data were preprocessed by selecting a spectral range of 5000-4500 cm−1, and then a Savitzky-Golay second-order polynomial was used with 21 data points to obtain second derivative spectra. Characterization of the biodiesel was done using chemometric models based on hierarchical cluster analysis (HCA), principal component analysis (PCA) and soft independent modeling of class analogy (SIMCA) elaborated for each group of biodiesel samples (cotton, sunflower, soybean and canola). For the HCA and PCA, the formation of clusters for each group of biodiesel was observed, and SIMCA models were built using 18 spectral measurements for each type of biodiesel (training set), and nine spectral measurements to construct a classification set (except for the canola oil which used eight spectra). The SIMCA classifications obtained 100% accurate identifications. Using this strategy, it was feasible to classify biodiesel quickly and nondestructively without the need for various analytical determinations. 相似文献