首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This paper describes an analytical method for trace element determination in bone tissues. The study of the influence of the bone matrix showed that the addition of 25% ground bone to graphite powder with introduced impurities did not affect the analytical signal of elements in the spectral excitation in a two-jet plasma. On basis of these investigations a method for direct multielement analysis of bone tissues was suggested. The sample preparation procedure consisted in mixing powdered bone (particle size 30 μm or less) with a spectroscopic buffer (graphite powder plus NaCl) in ratio 1:3 or to a greater extent depending on the analyte concentration. Reference samples based on graphite powder were used for construction of calibration curves. The NaCl concentration in analyzed and calibration samples was 15 wt%. The effect of particle size was revealed from the determination of Ba, Sr, and Mg. To eliminate this effect, treatment of the samples with nitric acid was proposed. The validation of the technique was confirmed by comparison of the analysis results of a bone sample with those obtained by inductively coupled plasma atomic emission spectrometry after wet acid digestion. The limits of detection estimated for 20 elements were the following (μg g-1): 0.1 (Ag), 1.0 (Al), 1.0 (Ba), 0.1 (Be), 1.2 (Bi), 0.4 (Cd), 1.0 (Co), 0.2 (Cu), 0.6 (Cr), 1.9 (In), 2 (Fe), 0.3 (Ga), 0.4 (Mn), 0.4 (Mo), 0.7 (Ni), 1.0 (Pb), 0.7 (Sn), 0.8 (Tl), 5 (Sr), 1.0 (Zn).  相似文献   

2.
Neurodegenerative diseases like Alzheimer's disease and Parkinson's disease are gaining increasing relevance in our aging society. However, the complex multifactorial mechanisms of these diseases are not sufficiently understood yet. Several studies indicate that metal ions play an important role in the promotion of these diseases. Consequently, the transport pathways of metals and their species to the brain are of special interest. Following oral or inhalative uptake metals are absorbed and distributed via the blood stream in the body. Transport into the brain requires crossing of the neural barriers.Our study focuses on the investigation of the permeability of the blood-cerebrospinal fluid (CSF)-barrier for selected metals (Mn, Fe, Cu, Zn, Mg and Ca). For the first time paired human serum and CSF samples obtained from a neurological department were characterised for total metal concentrations and metal species. For CSF few data are available in the literature on total metal contents and applications of element speciation analysis in CSF samples are rare. In our study mean CSF/serum ratios (n = 29) were 0.7 for Mn, 0.02 for Fe, 0.02 for Cu, 0.03 for Zn, 1.3 for Mg and 0.5 for Ca. Size exclusion chromatography (SEC) online with inductively coupled plasma mass spectrometry was further developed for the size characterisation of the metal species in CSF and serum with limits of detection of 0.4 μg L−1 for Fe, 0.01 μg L−1 for Mn, 0.2 μg L−1 for Cu, 0.2 μg L−1 for Zn, 0.6 μg L−1 for Mg and 3.8 μg L−1 for Ca in the eluate from the HPLC column. Apart from Mn the application of this technique has not been published for metal speciation in CSF, yet. In the case of some Mn species it turned out that methanol, which was contained in the mobile phase of a SEC method previously published from our group on qualitative characterisation of Mn species, was interfering with the quantification. The modified method developed in this work (with NaCl but without methanol in the mobile phase; use of internal standard) allowed reliable quantification. The results clearly indicate changes in the metal species pattern due to different permeation behaviour at the blood-CSF-barrier. As part of the method validation the relative stability of complexes of albumin, transferrin and citrate with Mn, Fe, Cu and Zn was investigated.  相似文献   

3.
A comparative study of several digestion methods of anisette samples has been carried out. Two dry ashing (DA) treatments as well as four wet ashing (WA) procedures using different mixtures of acids were applied for the sample mineralisation before analysis. Once the anisette samples were mineralised, the contents of Zn, B, Fe, Mg, Ca, Na and Si were determined by inductively coupled plasma-atomic emission spectrometry (ICP-AES). Each method has been studied statistically and also attending to their feasibility. After performing the optimisation of the different treatments tested, it was concluded that one wet ashing method employing a HNO3:H2O2 (10:1) mixture was the most suitable. This method was applied to the analysis of anisette samples. Na, Ca, Mg and Si were present in concentrations up to 215 mg l−1 for Na, 11.6 for Mg, 6.2 for Ca and 5.1 for Si. Fe and B concentrations were not higher than 0.12 mg l−1 and lower for Zn.  相似文献   

4.
Preeti Nigam  Subir Kundu 《Talanta》2009,77(4):1426-1431
Cefotaxime a third generation cephalosporin drug estimation in nanomolar concentration range is demonstrated for the first time in aqueous and human blood samples using novel Schiff base octahedral Zn(II) complex. The cefotaxime electrochemistry is studied over graphite paste and Zn(II) complex modified graphite paste capillary electrodes in H2SO4 (pH 2.3) using cyclic voltammetry and differential pulse voltammetry. Cefotaxime enrichment is observed over Zn(II) complex modified graphite paste electrode probably due to interaction of functional groups of cefotaxime with Zn(II) complex. Possible interactions between metal complex and cefotaxime drug is examined by UV-vis and electrochemical quartz crystal microbalance (EQCM) techniques and further supported by voltammetric analysis. Differential pulse voltammetry (DPV) with modified electrode is applied for the determination of cefotaxime in acidified aqueous and blood samples. Cefotaxime estimation is successfully demonstrated in the range of 1-500 nM for aqueous samples and 0.1-100 μM in human blood samples. Reproducibility, accuracy and repeatability of the method are checked by triplicate reading for large number of samples. The variation in the measurements is obtained less than 10% without any interference of electrolyte or blood constituents.  相似文献   

5.
Barbro Kollander 《Talanta》2010,80(5):2068-2075
A fast method for direct multi-element analysis of non-digested biological samples is presented. The only sample preparation needed is 1 min homogenization with a Polytron mixer in a small volume of neutral phosphate buffer saline solution (PBS). The total time for analysis (sample preparation and measurement) is 4 min only. This “mix and measure” method can handle large sample loads of biological samples and thus minimize dilution of trace elements. For example 100% whole blood was introduced without any clogging of the introduction system or extinguishing of the plasma. In 70% (v/v) whole blood reference material 14 of 16 analytes were quantified within ±10% (Al, B, Ba, Ca, Cu, Fe, Mg, Mn, P, Pb, S, Sr, Ti and Zn) and two semi-quantified within ±20% (Cd and K). Fresh bovine liver was also analyzed with the same method and 7 of 9 analytes were quantified in 5% (w/v) liver slurry. Three different nebulizers were tested, Glass Expansion Concentric (GEC) of Meinhard type, Cross Flow and Burgener T2100 and they performed roughly equally well in giving quantitative results for the slurries but the sensitivity was better with the GEC. The stability of the plasma was studied by evaluating the ratio of Mg 280.270 nm and Mg 285.213 nm lines. When increasing the sample load from 20 to 100% (v/v) of whole blood and from 0.5 to 10% (w/v) of bovine liver the Mg ratio was constant within a few percent for all of the nebulizer tested. The ratio of the sensitivity between GEC and Burgener T2100 was studied and the ratio increased with the energy sum for atomic and ionic lines separately.  相似文献   

6.
The effects of operating parameters and easily ionized additives on the analytical signal in the region before the confluence of plasmatron jets were studied. It was shown that the effective atomic excitation temperature in this region is independent of the concentration of NaCl (0–50%) in the graphite powder. A method was proposed for the direct atomic emission determination of trace elements in powdered samples. In this method, multielement analysis of various samples, such as graphite concentrates of trace impurities, soils, bottom sediments, plants, and humic acids can be performed under unified conditions using a unified set of reference samples without sample mineralization and dissolution. At the stage of sample preparation, a finely divided sample is mixed with a spectroscopic buffer (graphite powder doped with NaCl). The detection limits for several dozen elements in their direct determination varied from 10–6 to 10–4 wt % at a relative standard deviation (RSD) of no worse than 15%.  相似文献   

7.
The fast sequential multi-element determination of Ca, Mg, K, Cu, Fe, Mn and Zn in plant tissues by high-resolution continuum source flame atomic absorption spectrometry is proposed. For this, the main lines for Cu (324.754 nm), Fe (248.327 nm), Mn (279.482 nm) and Zn (213.857 nm) were selected, and the secondary lines for Ca (239.856 nm), Mg (202.582 nm) and K (404.414 nm) were evaluated. The side pixel registration approach was studied to reduce sensitivity and extend the linear working range for Mg by measuring at wings (202.576 nm; 202.577 nm; 202.578 nm; 202.580 nm; 202.585 nm; 202.586 nm; 202.587 nm; 202.588 nm) of the secondary line. The interference caused by NO bands on Zn at 213.857 nm was removed using the least-squares background correction. Using the main lines for Cu, Fe, Mn and Zn, secondary lines for Ca and K, and line wing at 202.588 nm for Mg, and 5 mL min− 1 sample flow-rate, calibration curves in the 0.1–0.5 mg L− 1 Cu, 0.5–4.0 mg L− 1 Fe, 0.5–4.0 mg L− 1 Mn, 0.2–1.0 mg L− 1 Zn, 10.0–100.0 mg L− 1 Ca, 5.0–40.0 mg L− 1 Mg and 50.0–250.0 mg L− 1 K ranges were consistently obtained. Accuracy and precision were evaluated after analysis of five plant standard reference materials. Results were in agreement at a 95% confidence level (paired t-test) with certified values. The proposed method was applied to digests of sugar-cane leaves and results were close to those obtained by line-source flame atomic absorption spectrometry. Recoveries of Ca, Mg, K, Cu, Fe, Mn and Zn in the 89–103%, 84–107%, 87–103%, 85–105%, 92–106%, 91–114%, 96–114% intervals, respectively, were obtained. The limits of detection were 0.6 mg L− 1 Ca, 0.4 mg L− 1 Mg, 0.4 mg L− 1 K, 7.7 µg L− 1 Cu, 7.7 µg L− 1 Fe, 1.5 µg L− 1 Mn and 5.9 µg L− 1 Zn.  相似文献   

8.
A flow injection analysis (FIA) system has been developed for the flame atomic absorption spectroscopic (FAAS) determination of zinc in iron matrix. The spectral line interference of iron at 213.859 nm was eliminated by on-line separation using a micro-column of strong anion-exchange resin (Dowex 1-X8). The zinc chloro complexes were retained from 2 M HCl solution while most of the iron chloro complexes were passed to waste. For a 2% iron solution, matrix removal efficiency was 98.2% which means that positive spectral line interference of iron at the Zn line was reduced from 0.42 to 0.008 μg ml−1 Zn. The optimized flow injection system can handle up to 48 samples with good precision (less than 3.5% relative standard deviation (R.S.D.)) in the working range of 0.075-2.2 μg ml−1 Zn. Comparative analysis of a certified reference material and synthetic sample solutions containing traces of Zn in 2% Fe by the proposed method and by graphite furnace atomic absorption spectroscopy (GFAAS) showed no evidence of analytical bias at the 95% confidence level.  相似文献   

9.
The fast sequential multi-element determination of 11 elements present at different concentration levels in environmental samples and drinking waters has been investigated using high-resolution continuum source flame atomic absorption spectrometry. The main lines for Cu (324.754 nm), Zn (213.857 nm), Cd (228.802 nm), Ni (232.003 nm) and Pb (217.001 nm), main and secondary absorption lines for Mn (279.482 and 279.827 nm), Fe (248.327, 248.514 and 302.064 nm) and Ca (422.673 and 239.856 nm), secondary lines with different sensitivities for Na (589.592 and 330.237 nm) and K (769.897 and 404.414 nm) and a secondary line for Mg (202.582 nm) have been chosen to perform the analysis. A flow injection system has been used for sample introduction so sample consumption has been reduced up to less than 1 mL per element, measured in triplicate. Furthermore, the use of multiplets for Fe and the side pixel registration approach for Mg have been studied in order to reduce sensitivity and extend the linear working range. The figures of merit have been calculated and the proposed method was applied to determine these elements in a pine needles reference material (SRM 1575a), drinking and natural waters and soil extracts. Recoveries of analytes added at different concentration levels to water samples and extracts of soils were within 88–115% interval. In this way, the fast sequential multi-element determination of major and minor elements can be carried out, in triplicate, with successful results without requiring additional dilutions of samples or several different strategies for sample preparation using about 8–9 mL of sample.  相似文献   

10.
This paper presents an alternative analytical method employing energy dispersive X-ray fluorescence (EDXRF) to determine copper, iron, nickel and zinc ions in ethanol fuel samples after a pre-concentration procedure. Our pre-concentration strategy utilizes analyte retention on cation exchange chromatography paper, a convenient substrate for direct EDXRF measurements. The repeatability, expressed in terms of RSD of standard solutions containing 0.25 μg mL−1 of Cu, Fe, Ni and Zn, and calculated from fifteen consecutive measurements, was 2.5, 2.8, 3.0, and 2.7%, respectively. The limits of detection (LOD), defined as the analyte concentration that gives a response equivalent to three times the standard deviation of the blank (n = 10), were found to be 13, 15, 15 and 12 μg L−1 for Cu, Fe, Ni and Zn, respectively. The proposed method was applied to Cu, Fe, Ni and Zn determination in hydrated ethanol fuel samples collected from different gas stations.  相似文献   

11.
Methods for the determination of 5 major (Ca, K, Mg, Na and P) and 14 minor elements (Al, Ba, Cd, Co, Cu, Fe, Ga, Mn, Mo, Ni, Pb, Rb, Sr and Zn) in vegetable seeds by ICP OES and by ICP-MS, respectively, are proposed. After a common sample preparation consisting of smashing and homogenization in an agata mortar, followed by acid digestion in a microwave oven, the diluted sample solutions were measured in the spectrometers using conventional pneumatic nebulizers. External calibration with aqueous standard solutions was used for both techniques. Internal standard was not required, due to the absence of non-spectral interference. For the major elements, the detection limits were in the range of 0.01 (Mg) to 0.3 µg g− 1 (Na and K) and for the minor elements they were in the range of 0.001 (several) to 0.4 µg g− 1 (Fe). The detection limits were adequate for the seed analysis. The accuracy was validated by analyzing a botanical certified reference material (Pine Needles). Agreement of the concentrations with the certified or informed values was obtained, according to the t-test for a confidence level of 95%. The relative standard deviations were below 10% indicating an adequate precision. Seeds from seven different plants were analyzed: cotton seed, sunflower, castor bean, fodder turnip, curcas bean, soybean and tung. The element concentrations varied considerably in the different samples. The results were also evaluated using the principal component analysis.  相似文献   

12.
The concentrations of Cu, Zn, Mn, Fe, K, Ca, Mg, Al, Ba and B in 26 herbal drugs of special importance in phytopharmacy were studied. Flame atomic absorption and emission spectrometry (FAAS, FAES), as well as inductively coupled plasma atomic emission spectrometry (ICP-AES), were applied in this work. The whole procedure, from sample preparation, via dissolution, to measurements, was validated by using CRM (NIST 1573a—tomato leaves), and the obtained recovery values are in the range from 91 to 102%. Drug samples originated from medicinal plants cultivated in Serbia contained Cu (4.47-14.08 mg kg−1), Zn (8.4-54.5 mg kg−1), Mn (9-155 mg kg−1), Fe (47-546 mg kg−1), K (0.20-6.24%), Ca (0.18-1.84%), Mg (0.13-1.09%), Al (16-416 mg kg−1), Ba (11.70-84.83 mg kg−1) and B (5.1-118.7 mg kg−1). In order to get a better insight into the elemental patterns, a common chemometric approach to data evaluation was used. Four significant factors identified by principal component analysis (PCA) were attributed partly to the significant influential sources and high mobility of some elements thus referring to potential anthropogenic contamination as well.  相似文献   

13.
The feasibility of using diluted HNO3 solutions under oxygen pressure for decomposition of whole and non-fat milk powders and whey powder samples has been evaluated. Digestion efficiency was evaluated by determining the carbon content in solution (digests) and the determination of Ca, Cd, Cu, Fe, K, Mg, Mn, Mo, Na, Pb and Zn was performed by inductively coupled plasma optical emission spectrometry and Hg by chemical vapor generation coupled to inductively coupled plasma mass spectrometry. Samples (up to 500 mg) were digested using HNO3 solutions (1 to 14 mol L− 1) and the effect of oxygen pressure was evaluated between 2.5 and 20 bar. It was possible to perform the digestion of 500 mg of milk powder using 2 mol L− 1 HNO3 with oxygen pressure ranging from 7.5 to 20 bar with resultant carbon content in digests lower than 1700 mg L− 1. Using optimized conditions, less than 0.86 mL of concentrated nitric acid (14 mol L− 1) was enough to digest 500 mg of sample. The accuracy was evaluated by determination of metal concentrations in certified reference materials, which presented an agreement better than 95% (Student's t test, P < 0.05) for all the analytes.  相似文献   

14.
Permanent modifiers (V, Ir, Ru, V-Ir, V-Ru, and W-V) thermally coated on to platforms of pyrolytic graphite tubes were employed for the determination of Cd, Pb, and Zn in botanic and biological slurries by electrothermal atomic absorption spectrometry (ETAAS). Conventional Pd + Mg(NO3)2 modifier mixture was also used for the determination of analytes in slurries and digested samples. Optimum masses and mass ratios of permanent modifiers for Cd, Pb, and Zn in slurry sample solutions were investigated. The 280 μg of V, 280 μg of V + 200 μg of Ir, 280 μg of V + 200 μg of Ru or 240 μg of W + 280 μg of V in 0.2% (v/v) Triton X-100 plus 0.5% (v/v) HNO3 mixture was found as efficient as 5 μg of Pd + 3 μg of Mg(NO3)2 modifier mixture for obtaining thermal stabilization, and for obtaining best recoveries. Optimization conditions of analytes, such as pyrolysis and atomization temperature, characteristic masses and detection limits, and atomization and background peak profiles were studied with permanent and 5 μg of Pd + 3 μg of Mg(NO3)2 conventional modifiers and compared with each other. The permanent V-Ir, V-Ru, and W-V modifiers remained stable for approximately 250-300 firings when 20 μl of slurries and digested samples were delivered into the atomizer. In addition, the mixed permanent modifiers increase the tube lifetime by 50-95% when compared with untreated platforms. The characteristic masses and detection limits of analytes (dilution factor of 125 ml g−1) obtained with V-Ir based on integrated absorbance as example for 0.8% (m/v) slurries were 1.0 pg and 3 ng g−1 for Cd, 18 pg and 17 ng g−1 for Pb, and 0.7 pg and 4 ng g−1 for Zn, respectively. The results of analytes obtained by employing V-Ir, V-Ru, and W-V permanent modifier mixtures in botanic and biological certified and standard reference materials were in agreement with the certified values of reference materials.  相似文献   

15.
A study of high-power two-jet plasma capabilities for the direct multi-elemental analysis of animal organs was undertaken. The experimental conditions chosen allow the direct analysis of different animal organs after drying and grinding to powder (particle size 20–200 μm). It was found that evaporation efficiency of the samples depends on the particle size and thermal stability of tissues and can be improved by reduction of a carrier gas flow. Calibration samples based on graphite powder and a tenfold dilution of powdered samples with buffer (graphite powder containing 15% NaCl) were used. 5–10 mg of the sample was quite enough to get the detection limits of elements at the level of 0.1–10 μg g? 1. A prior carbonization procedure (not ashing) makes it possible to decrease the detection limits of elements by an order of magnitude. The validation of the techniques was confirmed by the analysis of certified reference materials NIST 8414, BCR 278R and NCS ZC 81001 as well as by using different sample preparation procedures.  相似文献   

16.
Grigoletto T  Oliveira Ed  Gutz IG 《Talanta》2005,67(4):791-797
The new electrolytic dissolution in batch of aluminum alloys samples as grains or turns and the determination of Fe, Cu, Mn, Mg, Cr, Ni, Zn, Pb and Ti by ICP OES was investigated. In on-line electrodissolution procedures described in the literature, samples were restricted to be in the form of solid blocks or plates with one polished flat face. Here, the sample was loaded in the barrel of a modified disposable syringe (the anodic semi-cell) and pressed with a modified plunger fitted with a platinum disk to establish electrical contact with the analyte. This arrangement was introduced in a beaker containing the electrolyte (1 mol L−1 HNO3) and a platinum wire as the cathode. The resulting solution from electrodissolution (0.6 A) was used for the ICP OES determinations. The influence of the aluminum concentration increase on the determination of the elements was evaluated. Electrodissolution of certified reference materials and commercial samples revealed relative errors lower than 10% for the elements Fe, Cu, Mg, Ni, Cr, Zn and Ti (when their content is above 0.1%). Higher inaccuracies (>10%) were observed for Mn and for Fe in B.C.S. 268/1 reference material certified. The proposed method presented a relative standard deviations (R.S.D.) lower or circa 10% to all of the elements (except Pb). In comparison with traditional acid dissolution, the proposed electrodissolution method is relatively fast (about 30 min), it is clean (there is no projection of solution) and simple (heating and fumes exhaust system were not necessaries).  相似文献   

17.
Inductively coupled plasma – optical emission spectrometry (ICP-OES) was applied to the determination of the elements Ca, Mg, Fe, Cu, and Zn in blood plasma, erythrocytes, lymphocytes, and whole blood to obtain reliable data on their distribution in blood fractions. The samples were carefully collected to avoid contamination. Two different nebulizers (Babington and Meinhard) were tested and optimized for this analytical problem. Line selections for all elements of interest were performed (LODs were 0.8 μg/L for Ca, 1.7 μg/L for Cu, 3.0 μg/L for Fe, 1.1 μg/L for Mg, and 4.2 μg/L for Zn). Recoveries were determined as approx. 100%, and standard reference material was analyzed to obtain reliable data on element distribution. The optimized method was applied to the determination of Ca, Mg, Fe, Cu, and Zn in the course of a clinical study on blood and blood fractions of two groups of humans of differing health. The concentrations measured in blood fractions were verified by balancing with the values found in whole blood.  相似文献   

18.
Inductively coupled plasma-optical emission spectrometry (ICP-OES) was applied to the determination of the elements Ca, Mg, Fe, Cu, and Zn in blood plasma, erythrocytes, lymphocytes, and whole blood to obtain reliable data on their distribution in blood fractions. The samples were carefully collected to avoid contamination. Two different nebulizers (Babington and Meinhard) were tested and optimized for this analytical problem. Line selections for all elements of interest were performed (LODs were 0.8 microg/L for Ca, 1.7 microg/L for Cu, 3.0 microg/L for Fe, 1.1 microg/L for Mg, and 4.2 microg/L for Zn). Recoveries were determined as approx. 100%, and standard reference material was analyzed to obtain reliable data on element distribution. The optimized method was applied to the determination of Ca, Mg, Fe, Cu, and Zn in the course of a clinical study on blood and blood fractions of two groups of humans of differing health. The concentrations measured in blood fractions were verified by balancing with the values found in whole blood.  相似文献   

19.
A method for light and heavy crude oil digestion using microwave-induced combustion (MIC) in closed vessels is described for further determination of Ag, As, Ba, Bi, Ca, Cd, Cr, Fe, K, Mg, Li, Mn, Mo, Ni, Pb, Rb, Se, Sr, Tl, V, and Zn by inductively coupled plasma mass spectrometry (ICP-MS). Conventional microwave-assisted acid digestion (MW-AD) in pressurized vessels and analyte determination by inductively coupled plasma optical emission spectrometry (ICP OES) were also used for results comparison. For MIC procedure, samples were wrapped in polyethylene films and combusted using 20 bar of oxygen and 50 µl of 6 mol l− 1 ammonium nitrate as aid for ignition. The concentration of nitric acid used as absorbing solution was evaluated (1, 2, 4, 7, 10 and 14 mol l− 1) using an additional reflux step after combustion. Accuracy was evaluated for As, Ba, Ni, Se V, and Zn using certified reference material (CRM) with similar matrix composition and for Cr, Fe, K, Mg, Mn, and Mo by neutron activation analysis (NAA). Recovery tests were also performed for all the analytes by MIC and they were better than 97% using 2 mol l− 1 nitric acid as absorbing solution (with reflux step). Agreement with certified values and NAA results was better than 95%. Using MIC it was possible to obtain lower limits of detection (LODs) by ICP-MS and also by ICP OES in comparison with those obtained by MW-AD. In spite of both sample preparation techniques were apparently suitable for crude oil digestion, MIC was preferable in view of the possibility of using diluted nitric acid as absorbing solution that is an important aspect to minimize interferences by ICP-MS and ICP OES. In order to avoid polyatomic interferences on 52Cr and 56Fe determinations by ICP-MS, a dynamic reaction cell with ammonia gas was used. Residual carbon content in digests obtained by MW-AD and MIC was 15% and < 1%, respectively. Using MIC the simultaneous digestion of 8 samples was possible in less than 30 min.  相似文献   

20.
A flow-batch system was developed for the determination of Fe(III) in estuarine waters with high variability in salinity. The method is based on the catalytic effect of iron(III) on the oxidation rate of N,N-dimethyl-p-phenylenediammonium dichloride (DmPD) by hydrogen peroxide and the formed product is spectrophotometrically monitored at 554 nm. A controlled addition of sodium chloride to every assayed sample is accomplished for in-line individual salinity matching.The proposed system processes about 30 samples h−1 and yields reproducible results. Relative standard deviations were estimated as <1.5% after 10 injections of typical samples (10.0-50.0 μg l−1 Fe; ca. 0.5 mol l−1 Cl). Synthetic samples (15.0 μg l−1 Fe; 0.25-1.0 mol l−1 NaCl) were efficiently processed, and no significant differences in results were found at a probability level of 99.7%. The method works for the full range of salinities. Only 120 μg DmPD are consumed per determination. The analytical curve is linear up to about 60 μg l−1 Fe (r>0.999; n=5) and the detection limit is 5 μg l−1 Fe. Results are in agreement with graphite furnace atomic absorption spectrometry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号