首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 635 毫秒
1.
Subcritical water extraction of organic matter containing sedimentary rocks at 300 °C and 1500 psi produces extracts comparable to conventional solvent extraction. Subcritical water extraction of previously solvent extracted samples confirms that high molecular weight organic matter (kerogen) degradation is not occurring and that only low molecular weight organic matter (free compounds) are being accessed in analogy to solvent extraction procedures. The sedimentary rocks chosen for extraction span the classic geochemical organic matter types. A type I organic matter-containing sedimentary rock produces n-alkanes and isoprenoidal hydrocarbons at 300 °C and 1500 psi that indicate an algal source for the organic matter. Extraction of a rock containing type II organic matter at the same temperature and pressure produces aliphatic hydrocarbons but also aromatic compounds reflecting the increased contributions from terrestrial organic matter in this sample. A type III organic matter-containing sample produces a range of non-polar and polar compounds including polycyclic aromatic hydrocarbons and oxygenated aromatic compounds at 300 °C and 1500 psi reflecting a dominantly terrestrial origin for the organic materials. Although extraction at 300 °C and 1500 psi produces extracts that are comparable to solvent extraction, lower temperature steps display differences related to organic solubility. The type I organic matter produces no products below 300 °C and 1500 psi, reflecting its dominantly aliphatic character, while type II and type III organic matter contribute some polar components to the lower temperature steps, reflecting the chemical heterogeneity of their organic inventory. The separation of polar and non-polar organic compounds by using different temperatures provides the potential for selective extraction that may obviate the need for subsequent preparative chromatography steps. Our results indicate that subcritical water extraction can act as a suitable replacement for conventional solvent extraction of sedimentary rocks, but can also be used for any organic matter containing mineral matrix, including soils and recent sediments, and has the added benefit of tailored extraction for analytes of specific polarities.  相似文献   

2.
Dynamic fractionation has been recognized as an appealing alternative to conventional equilibrium-based sequential extraction procedures (SEPs) for partitioning of trace elements (TE) in environmental solid samples. This paper reports the first attempt for harmonization of flow-through dynamic fractionation using two novel methods, the so-called sequential injection microcolumn (SIMC) extraction and rotating coiled column (RCC) extraction. In SIMC extraction, a column packed with the solid sample is clustered in a sequential injection system, while in RCC, the particulate matter is retained under the action of centrifugal forces. In both methods, the leachants are continuously pumped through the solid substrates by the use of either peristaltic or syringe pumps.A five-step SEP was selected for partitioning of Cu, Pb and Zn in water soluble/exchangeable, acid-soluble, easily reducible, easily oxidizable and moderately reducible fractions from 0.2 to 0.5 g samples at an extractant flow rate of 1.0 mL min−1 prior to leachate analysis by inductively coupled plasma-atomic emission spectrometry.Similarities and discrepancies between both dynamic approaches were ascertained by fractionation of TE in certified reference materials, namely, SRM 2711 Montana Soil and GBW 07311 sediment, and two real soil samples as well. Notwithstanding the different extraction conditions set by both methods, similar trends of metal distribution were in generally found. The most critical parameters for reliable assessment of mobilisable pools of TE in worse-case scenarios are the size-distribution of sample particles, the density of particles, the content of organic matter and the concentration of major elements. For reference materials and a soil rich in organic matter, the extraction in RCC results in slightly higher recoveries of environmentally relevant fractions of TE, whereas SIMC leaching is more effective for calcareous soils.  相似文献   

3.
Here we present a new method for sequential selective extractions (SSEs) for Hg in geological solids, validated with extensive quality assurance procedures. Mercury was separated into fractions which “make sense” biogeochemically, rather than being identified by specific compounds. Experiments elucidated the effects of extraction time, solids-to-liquid ratio, and alternate solvents in natural samples, reference materials, and pure compounds. Compounds tested included HgS (red and black), HgCl2, Hg0, Hg2Cl2, HgSe, HgO, Hg(II) adsorbed on goethite, Hg-humate, and gold amalgamated Hg. Based on these findings, a five-step sequence of extractions was established to separate the compounds into biogeochemically distinct categories. The fractions and leaching media were as follows: F1 (deionized water), F2 (0.01 M HCl+0.1 M CH3COOH), F3 (1 M KOH), F4 (12 M HNO3), and F5 (aqua regia). Method blanks and method detection limits (MDLs) of 0.1-5 ng/g were obtained for the various analytical fractions, depending on the reagent concentrations used. Precision ranged from 2 to 8% for the major fractions in a sample, but increased to 2-40% for fractions making up <5% of the total. Recovery of total Hg by the sum of species in reference materials showed that the accuracy of the method ranges from 90 to 105%. Methylation potential, determined by anoxic incubation sample aliquots with biologically active sediments, showed that inorganic Hg extracted in the F3 fraction is most strongly correlated with methylation potential. In most natural and sediment incubation samples, the majority of Hg present was found either in the F3 or F5 fractions.  相似文献   

4.
Pengran Guo 《Talanta》2007,71(2):778-783
Sequential extraction procedures were widely applied for speciation of radioactive elements. In this study, the sequential extraction procedure developed by Martínez-Aguirre was employed for quantification of different chemical forms of thorium in the soil. The total amount of thorium in contaminated soil was much higher by four-fold than the local background value. The soil properties affect the amount of thorium and distribution of fractions in contaminated soil. Results showed that the proportion of thorium in soils from Baotou was found as the residual fraction (F5 + F6) > absorbed fraction (F3), coprecipitated fraction (F4) > carbonates fraction (F2) and exchangeable fraction (F1) that could be available to plants. The recovery, calculated by ratio of the sum of the six fractions to the pseudo-total content of thorium, was in the range from 96% to 110%. A comparison was carried out between the sequential extraction and the single extraction to evaluate the selectivity of the extractants. It was found that the amount of thorium of absorbed fraction (F3) was higher in the single extraction than that estimated in the sequential extraction, possibly duo to transform of the labile form. While for non-residual fraction analysis, the single extraction scheme was a desirable alternative to the sequential extraction procedure. According to correlativity analysis of various fractions, it might be predicted that how the non-residual fractions of thorium were directionally transformed into interrelated fractions under the changes of conditions.  相似文献   

5.
A gas-diffusion flow injection method for the chemiluminescence detection of Hg(II) based on the luminol-H2O2 reaction was developed. The analytical procedure involved the injection of Hg(II) samples and standards into a 1.50 M H2SO4 carrier stream, which was subsequently merged with a reagent stream of 0.60% (w/v) SnCl2 in 1.50 M H2SO4 to reduce Hg(II) to metallic Hg. The gas-diffusion cell was thermostated at 85 °C to enhance the vaporisation of metallic Hg. Mercury vapour, transported across the Teflon membrane of the gas-diffusion cell into the acceptor stream containing 1.00 × 10−4 M KMnO4 in 0.30 M H2SO4, was oxidised back to Hg(II). The acceptor stream was merged with a reagent stream containing 2.50 M H2O2 in deionised water and then the combined stream was merged with another reagent stream containing 7.50 × 10−3 M luminol in 3.00 M NaOH at a confluence point opposite to the photomultiplier tube of the detection system. The chemiluminescence intensity of the luminol-H2O2 reaction was enhanced by the presence of Hg(II) in the acceptor stream. The corresponding increase was related to the original concentration of Hg(II) in the samples and standards. Under optimal conditions, the chemiluminescence gas-diffusion flow injection method was characterised by a linear calibration range between 1 μg L−1 and 100 μg L−1, a detection limit of 0.8 μg L−1 and a sampling rate of 12 samples per hour. It was successfully applied to the determination of mercury in seawater and river samples.  相似文献   

6.
With the continual increase in the utilisation of rare earth elements (REE) for industrial and agricultural purposes, research into the environmental and biogeochemical behaviour of REE had attracted much interest in recent times. This study principally describes the distribution of REE in four different types of soils like lateritic soil (S-1), in situ natural soil (S-2), soil contaminated by mining activity (S-3) and accidentally polluted soil (S-4) utilizing the optimised BCR sequential extraction procedure and partial extractions with various types of single extractants such as unbuffered salt solutions 0.1 M NaNO3, 0.01 M CaCl2, 1 M NH4NO3; complexing agents 0.005 M DTPA and 0.05 M EDTA; acid solutions 0.43 M CH3COOH and 1 M HCl. Comparison of the sum of the four BCR fractions, which included an aqua regia attack on the residue, with the pseudo-total aqua regia digest values to assess the accuracy of the BCR partioning approach has been undertaken. Partial extraction results with several single extractants have also been reported for all the REE elements including yttrium which have been analysed by the optimised BCR procedure. Results obtained after 24 h extraction with each of the single extractant have also been discussed. The extraction with 1 M HCl during 24 h yielded similar quantities of REE as those released under the combined steps of 1, 2 and 3 of the BCR sequential extraction for all the four different type of soil samples indicating that this reagent can be used successfully to estimate the total extractable contents of REE in various types of soil samples.  相似文献   

7.
Colorimetric solid phase extraction (C-SPE) is an analytical technique in which analytes in water samples are extracted onto a solid adsorbent matrix impregnated with a colorimetric reagent and then quantified directly on the adsorbent surface using diffuse reflectance spectroscopy. This paper presents a further development in C-SPE. In this case, the reagent employed to detect the analyte is not impregnated on the extraction medium. Instead, the reagent is weakly immobilized on a solid support (i.e., filter paper) and released into the sample as it flows through the support. The reagent complexes the analyte in solution, forming a highly colored precipitate that is collected on the surface of an extraction membrane. The concentration of analyte is determined using the Kubelka-Munk function calculated from the diffuse reflectance spectrum of the precipitate on the membrane surface. This precipitation-spectrophotometric platform is extensively evaluated by determining nickel(II) using dimethylglyoxime (DMG) as the precipitating reagent. The ability to optimize reaction conditions with immobilized reagents by in-line buffering is also demonstrated. Specifically, borax buffer was utilized to adjust the pH of nickel(II) samples prepared in deionized water. This combination of immobilized buffer and reagent allows C-SPE to operate in a solid-phase mode in which all the reagents requisite for optimal analyte determination are immobilized on solid supports. Using this method, nickel(II) was determined in a single processing step over the concentration range 0.50-5.0 ppm in ∼40 s with 1.0 ml sample volumes.  相似文献   

8.
Dynamic and static ultrasonic procedures involving ultrasonic bath and tandem focused ultrasound (i.e. two probes were used in the same sample treatment) have been assessed in order to implement a reliable solid-liquid back extraction of mercury from commercial resins (dowex and chelex-100), previously used to concentrate Hg(II) from treated urine. The urine had been previously treated with an advanced oxidation process provided by the conjunction of potassium permanganate, hydrochloric acid and high intensity focused ultrasound, which allowed that organic matter degradation was achieved in less than 3 min. 95 ± 10% of mercury in the certified urine and 97 ± 6% of the spiked methyl-mercury was recovered with the dowex resin plus the static ultrasonic procedure, whilst 96 ± 11% of the spiked mercury was recovered with the dowex resin plus the dynamic procedure, for which ultrasonication was not necessary. The Hg pre-concentration factor used in this work was 8 (20 mL of urine to 2.5 mL of acid), but different volume ratios can be used in order to increase this factor.  相似文献   

9.
A new method for solid-phase extraction and preconcentration of trace amounts Hg(II) from environmental samples was developed by using sodium dodecyle sulphate-coated magnetite nanoparticles (SDS-coated Fe3O4 NPs) as a new extractant. The procedure is based on the adsorption of the analyte, as mercury-Michler's thioketone [Hg2(TMK)4]2+ complex on the negatively charged surface of the SDS-coated Fe3O4 NPs and then elution of the preconcentrated mercury from the surface of the SDS-coated Fe3O4 NPs prior to its determination by flow injection inductively coupled plasma-optical emission spectrometry. The effects of pH, TMK concentration, SDS and Fe3O4 NPs amounts, eluent type, sample volume and interfering ions on the recovery of the analyte were investigated. Under optimized conditions, the calibration curve was linear in the range of 0.2-100 ng mL−1 with r2 = 0.9994 (n = 8). The limit of detection for Hg(II) determination was 0.04 ng mL−1. Also, relative standard deviation (R.S.D.) for the determination of 2 and 50 ng mL−1 of Hg(II) was 5.2 and 4.7% (n = 6), respectively. Due to the quantitative extraction of Hg(II) from 1000 mL of the sample solution an enhancement factor as large as 1230-fold can be obtained. The proposed method has been validated using a certified reference materials, and also the method has been applied successfully for the determination of Hg(II) in aqueous samples.  相似文献   

10.
A rapid and inexpensive gas-diffusion (GD) flow injection method for the on-line determination of Hg(II) in aqueous samples is described. The analytical procedure involves the injection of a Hg(II) sample into a 1.5 M H2SO4 carrier stream which is merged with a reagent stream containing 0.6% SnCl2 and 1.5 M H2SO4. Under these conditions Hg(II) is reduced to metallic mercury which partially evaporates through a Teflon membrane into an acceptor stream containing 1.75×10−4 M KMnO4 in 0.3 M H2SO4. The decrease in the absorbance of the acceptor stream at 528 nm corresponding to the absorption maximum of the permanganate anion can be related to the original concentration of Hg(II) in the sample. The method is characterized by a detection limit of 4 μg l−1 and a sampling frequency of 8 h−1. The flow system was successfully applied to the analysis of river samples spiked with Hg(II).  相似文献   

11.
A procedure involving bead-injection concept and sequential determination of copper and mercury ions in river-water samples is proposed. The method is based on the solid-phase extraction of both metal ions on the same beads surface (Chelex 100 resin) and in their subsequent reaction with the colorimetric reagents (APDC and Dithizone for copper and mercury ions, respectively). For this task, a resin mini-column is established in the optical path by the selection, introduction and trapping of a defined volume of the Chelex-100 resin beads suspension in the flow system. The passage of the sample solution through the resin mini-column promotes the sorption of Cu(II) ions and, making the APDC colorimetric reagent flows through the beads, the formation of the coloured complex on the solid phase surface occurs. The absorbance of the formed APDC-Cu complex is then monitored at 436 nm and the spent beads are discarded. Packing another resin mini-column in the flow cell and repeating the concentration step it is possible to carried out the mercury determination by using Dithizone as reagent. The absorbance of the Dithizone-Hg complex is monitored at 500 nm. After each measurement, the spent beads are wasted and a new portion of fresh one is trapped in the system, letting it ready for the next measurement. The bead injection system is versatile and can be used to concentrate different sample volumes, which permits the determination of a wide range of copper and mercury ions concentrations. When the sample-selected volumes are 100 and 1000 μl the analytical ranges were 5.0 up to 500.0 μg l−1 and 2.5 up to 30.0 μg l−1 for Cu(II) and Hg(II) ions, respectively. Under these conditions, the detection limit was estimated as 0.63 and 0.25 μg l−1 for copper and mercury ions determination. The system consumes 2 mg of Chelex 100 resin beads, 0.20 mg of APDC or 1.25 mg of Dithizone per determination and the traditional organic solvent extraction methodology, normally used in connection with APDC and Dithizone reagents, is not used here which permits to classify the present method as green.  相似文献   

12.
The total and bioaccessible concentration of 16 polycyclic aromatic hydrocarbons (PAHs) in soil from a former industrial site was investigated. Typical total concentrations across the sampling sites ranged from 1.5 mg kg−1 for acenaphthylene up to 243 mg kg−1 for fluoranthene. The oral bioaccessibility of PAHs in soil was assessed using an in vitro gastrointestinal extraction (Fed Organic Estimation human Simulation Test, FOREhST method). The oral bioaccessibility data indicated that fluorene, phenanthrene, chrysene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene had the highest % bioaccessible fraction (based on their upper 75th percentile values being >60%) while the other PAHs had lower % bioaccessible fractions (means ranging between 35 and 59%). Significantly lower bioaccessibilities were determined for naphthalene. With respect to method validation and inter-laboratory comparison, the total and bioaccessible concentrations of benzo(a)anthracene, benzo(b)anthracene, benzo(k)fluoranthene, benzo(a)pyrene, indeno(1,2,3-cd)pyrene and dibenzo(a,h)anthracene was compared to published data derived using the same samples. The total PAH concentrations at the site were compared with generic assessment criteria (GAC) using the residential land use scenario (with plant uptake at 6% soil organic matter). Concentrations of 7 of the PAHs investigated within the soils could lead to an unacceptable risk to human health at this site.  相似文献   

13.
A method for the simultaneous preconcentration and determination of Hg(II) and MeHg(I) at the ng ml−1 level has been developed. This method is based on solid phase extraction using a newly synthesized chelating resin containing nitrogen and sulphur donor sites of the 1,2-bis(o-aminophenylthio)ethane moiety that is very selective for mercury. The characterization of the resin has been carried out by elemental analyses, infrared spectral data, thermogravimetric analysis and metal ion capacities. The resin is highly selective for Hg(II) and MeHg(I) with an exchange capacity of 0.38 and 0.30 mmol g−1, respectively. Various parameters like pH, column flow rate, desorbing agents are optimized. Cold vapour atomic absorption spectrometry (CVAAS) was used to measure the concentration of both species of mercury. The calibration graph was linear upto 10 ng ml−1 with a 3σ detection limit of 0.09 ng ml−1. The recovery of Hg(II) and MeHg(I) was found to be 98.9±2.0 and 98.0±1.1%, respectively. The method has been used for routine determination of trace levels of mercury species in natural waters to comply with more stringent regulations.  相似文献   

14.
A novel method based on ultrasonic solvent extraction and stir bar sorptive extraction for the analysis of phenolic organic pollutants including chlorophenols, bisphenol-A, 4-tert-octylphenol and 4-nonylphenol in soil samples was developed. The different parameters that affect both the extraction of analytes from the soil samples, such as solvent selection, extraction time, and the partitioning from the solvent/water mix to poly(dimethylsiloxane) (PDMS) were studied. The final selected conditions consisted of the extraction of 1 g of soil with 15 mL methanol by sonication for 30 min. The methanol extract was mixed with 85 mL of Milli-Q water and extracted by means of stir bar sorptive extraction with in situ derivatisation. The stir bars were analyzed by thermal desorption–gas chromatography–mass spectrometry (TD–GC–MS). The effects of the matrix on the recovery of the various pollutants under the developed method were studied using two soils with very different physicochemical properties. Method sensitivity, linearity, repeatability, and reproducibility were also studied. Validation and accuracy of the method were conducted by analyzing two commercial certified reference materials and by comparing the analysis of real samples with the proposed method and a classical method using pressurized solvent extraction (PSE)–GC–MS. The main advantage of this method is a substantial solvent reduction. For the extraction of only 1 g of solid sample allowing limits of detection ranging from 0.2 to 1.7 μg kg−1 dw. Repeatability and reproducibility variation were lower than 20% for all investigated compounds. Results of the certified reference materials and the real samples verify the high accuracy of this method.  相似文献   

15.
A novel dual-ligand reagent (2Z)-N,N′-bis(2-aminoethylic)but-2-enediamide, was synthesized and applied to prepare metal ion-imprinted polymers (IIPs) materials by ionic imprinted technique for selective solid-phase extraction (SPE) of trace Cd(II) from aqueous solution. In the first step, Cd(II) formed coordination linkage with the two ethylenediamine groups of the synthetic monomer. Then the complex was copolymerized with pentaerythritol triacrylate (crosslinker) in the presence of 2,2′-azobisisobutyronitrile as initiator. Subsequently, the imprinted Cd(II) was completely removed by leaching the dried and powdered materials particles with 0.5 M HCl. The obtained IIPs particles exhibited excellent selectivity for target ion. The distribution ratio (D) values of Cd(II)-IIPs for Cd(II) were greatly larger than that for Cu(II), Zn(II) and Hg(II). The relative selective factor (αr) values of Cd(II)/Cu(II), Cd(II)/Zn(II) and Cd(II)/Hg(II) were 25.5, 35.3 and 62.1. The maximum static adsorption capacity of the ion-imprinted and non-imprinted sorbent for Cd(II) was 32.56 and 6.30 mg g−1, respectively. Moreover, the times of adsorption equilibration and complete desorption were remarkably short. The prepared Cd(II)-IIPs were shown to be promising for solid-phase extraction coupled with inductively coupled plasma atomic emission spectrometry (ICP-AES) for the determination of trace Cd(II) in real samples. The precision (R.S.D.) and detection limit (3σ) of the method were 2.4% and 0.14 μg L−1, respectively. The column packed with Cd(II)-IIPs was good enough for Cd(II) separation in matrixes containing components with similar chemical behaviour such as Cu(II), Zn(II) and Hg(II).  相似文献   

16.
A novel continuous-flow system for the dynamic extraction of water soluble metal fractions in airborne particulate matter (APM) with subsequent inductively coupled plasma optical emission spectrometric (ICP-OES) analysis of derived extracts is presented. The fully automated extraction system with on-line multi-element detection offers enhanced sensitivity when compared to batch-wise counterparts; additionally it provides information about the extraction process. With the developed procedure detection limits in the order of 1.5 (Ba) to 8.0 (Ni) ng extractable mass per investigated sample could be achieved, which translates to method detection limits for soluble metal concentrations in APM ranging from 0.2 ng m−3 (Ba) to 0.9 ng m−3 (Fe). Reproducibility of analysis was determined by replicate measurement (n = 6) of an APM sample with an aerodynamic diameter ≤10 μm (PM10), derived results varied between 3.5% (Mn) and 12.1% (Ni) relative standard deviation. Method validation was accomplished by comparison of extracted soluble and remaining non-soluble fractions with the total metal contents of the investigated PM10 samples, showing an excellent mass balance for all elements. Application of the developed procedure for the analysis of water soluble metal fractions in PM10 samples (n = 16) from Linz (Austria) indicated a high variability of extractable fractions ranging from 11.7 ± 7.2% (Fe) to 48.8 ± 15.4% (Mn) of the total metal contents.  相似文献   

17.
Ion exchange chromatography (IEC) using a bi-functional column (quaternary ammonium and sulfonate groups), followed by post-column reaction (PCR) with 1-(2-pyridylazo)-2-naphthol (PAN), was used to separate and quantitate Cu(II), Ni(II), Zn(II), Co(II), Cd(II), Mn(II) and Hg(II) at low concentration levels. IEC-PCR separation was achieved within 14 min using the mobile phase containing 3 mmol L− 1 2,6-pyridinedicarboxylic acid (PDCA) and 3 mmol L− 1 oxalate at pH 12.5. Effects of pH as well as PAN, detergent and chloride ion concentrations during post-column reaction on detector response were examined. Detection limits were less than 4.5 μg L− 1 for all metals except Hg(II) (19 μg L− 1) using spectrophotometric measurements at 550 nm. Analytical validations showed good linearity for detection up to 6.0 mg L− 1, with R2 higher than 0.99. Precisions based on retention time evaluation for intra-day and inter-day measurements with the relative standard deviation (RSD) were less than 2.9% and 3.6%, respectively. The method gave good accuracy with the recoveries ranged from 80.5 to 105% for all metal ions studied. The proposed method was applied to the analysis of metal ions in environmental samples (leachate, soil and sediment) in Northeastern Thailand. The results were in good agreement with atomic spectroscopic measurements on the same samples.  相似文献   

18.
A great mean value of recovery for extraction of 3,4-dichloroaniline from a soil is calculated from individual recovery values evaluated for four different fractions of the soil. Then the uncertainty associated to this great mean recovery is calculated and used to know whether to apply or not the correction in routine analysis performed for the same kind of soil and the same analyte. The most representative fractions that, as a function of particle size, can be identified in a soil are: sand (2.000-0.063 mm), coarse silt (0.063-0.020 mm), fine silt (0.020-0.002 mm) and clay (≤0.002 mm). These fractions are here considered as sub matrices of the matrix soil.To evaluate the mean recovery and its uncertainty, as a function of the sub matrix and the analyte concentration, the four blank soil fractions were spiked with the analyte at three concentration levels (10.0, 50.0 and 100.0 mg/kg) and three replicates were performed for each experiment. The 36 samples were extracted by accelerated solvent system and the amounts of 3,4-dichloroaniline were determined by RP-HPLC analysis. From the 36 individual recovery values, the great mean and its uncertainty are calculated.Experiments performed on samples of soil of similar composition, spiked with known concentrations of the same analyte showed the goodness of the mean recovery value.  相似文献   

19.
A new method that uses solid phase extraction (SPE) coupled with FTIR spectroscopy to detect Hg(II) in aqueous samples is described. The technique is envisioned for on-site, field evaluation rather than lab-based techniques. This paper presents the “proof of principle” of this new approach toward measurements of Hg(II) in water and identifies mass transport issues that would need to be overcome in order to migrate from a lab based method to field operation. The SPE material supported on a Si wafer is derivatized with an acylthiosemicarbazide, which undergoes a reaction in the presence of aqueous Hg(II) to form an oxadiazole ring. The progress of the reaction is monitored by IR spectroscopy. Following EPA guidelines, the method of detection limit (MDL) for the SPE/IR was 5 μg of Hg(II) cm−2. In a 1 L sample and a 1 cm2 Si wafer, this translates to a detection limit of 5 ppb. This system shows a high selectivity toward aqueous Hg(II) over other thiophilic heavy metal ions such as Pb(II), Cd(II), Fe(III), and Zn(II) and other metal ions such as Ni(II), Mn(II), Co(II), Cu(II), In(III), Ru(III), Na(I), and Ag(I) in aqueous solutions.  相似文献   

20.
A new electrochemical methodology to study labile trace metal/natural organic matter complexation at low concentration levels in natural waters is presented. This methodology consists of three steps: (i) an estimation of the complex diffusion coefficient (DML), (ii) determination at low pH of the total metal concentration initially present in the sample, (iii) a metal titration at the desired pH. The free and bound metal concentrations are determined for each point of the titration and modeled with the non-ideal competitive adsorption (NICA-Donnan) model in order to obtain the binding parameters. In this methodology, it is recommended to determine the hydrodynamic transport parameter, α, for each set of hydrodynamic conditions used in the voltammetric measurements.The methodology was tested using two fractions of natural organic matter (NOM) isolated from the Loire river, namely the hydrophobic organic matter (HPO) and the transphilic organic matter (TPI), and a well characterized fulvic acid (Laurentian fulvic acid, LFA). The complex diffusion coefficients obtained at pH 5 were 0.4 ± 0.2 for Pb and Cu/HPO, 1.8 ± 0.2 for Pb/TPI and (0.612 ± 0.009) × 10−10 m2 s−1 for Pb/LFA. NICA-Donnan parameters for lead binding were obtained for the HPO and TPI fractions. The new lead/LFA results were successfully predicted using parameters derived in our previous work.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号