首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A selective and sensitive amperometric method of analysis has been developed for determination of the trace amounts of mercury in waters at a platinum electrode based on the effect of the presence of mercury ions on the current due to oxidation of l-tyrosine. A decrease of signal was observed due to the formation of a complex of tyrosine with the Hg(II) ion adsorbed on the electrode surface. Several parameters were varied, such as applied potential, pH and concentration of tyrosine. The calibration plot was linear in the range from 0.02 to 3 μmol l−1 Hg(II) with r=0.997 and the detection limit (3σ) was 0.014 μmol l−1; the relative standard deviation was 2.2%. The study of interferences from other metal ions revealed a good selectivity of this method towards mercury(II). The stoichiometry of the mercury-tyrosine complex was determined to be 1:2 and the formation constant 627±19. Formation of complexes with mercury ions was also demonstrated with several catechol compounds and other amino acids. The method was applied to the analysis of contaminated waters.  相似文献   

2.
Tang X  Liu Y  Hou H  You T 《Talanta》2011,83(5):1431-1414
Xanthine (Xa) determination is of considerable importance in clinical analysis and food quality control. Therefore, a sensitive nonenzymatic amperometric sensor for Xa based on carbon nanofibers (CNFs) has been proposed. The CNFs, which were prepared by electrospinning technique and subsequent thermal treatment, were used to modify carbon paste electrode (CNF-CPE) to construct the amperometric sensor device without any oxidation pretreatment. In application to Xa electrochemical determination, the CNF-CPE exhibited high electrocatalytic activity and fast amperometric response. Various experimental parameters, such as pH and applied potential were optimized. Under the optimal conditions, the dynamic linear range of Xa was 0.03-21.19 μM (R = 0.9992) with the detection limit low to 20 nM (S/N = 3). With good selectivity and sensitivity, the present system was successfully applied to estimate the freshness of fish and determine Xa in human urine, which provides potential application in food quality control and clinical analysis.  相似文献   

3.
A novel l-glutamate biosensor was fabricated using bacteria surface-displayed glutamate dehydrogenase (Gldh-bacteria). Here the cofactor NADP+-specific dependent Gldh was expressed on the surface of Escherichia coli using N-terminal region of ice nucleation protein (INP) as the anchoring motif. The cell fractionation assay and SDS-PAGE analysis indicated that the majority of INP-Gldh fusion proteins were located on the surface of cells. The biosensor was fabricated by successively casting polyethyleneimine (PEI)-dispersed multi-walled carbon nanotubes (MWNTs), Gldh-bacteria and Nafion onto the glassy carbon electrode (Nafion/Gldh-bacteria/PEI-MWNTs/GCE). The MWNTs could not only significantly lower the oxidation overpotential towards NAPDH, which was the product of NADP+ involving in the oxidation of glutamate by Gldh, but also enhanced the current response. Under the optimized experimental conditions, the current–time curve of the Nafion/Gldh-bacteria/PEI-MWNTs/GCE was performed at +0.52 V (vs. SCE) by amperometry varying glutamate concentration. The current response was linear with glutamate concentration in two ranges (10 μM–1 mM and 2–10 mM). The low limit of detection was estimated to be 2 μM glutamate (S/N = 3). Moreover, the proposed biosensor is stable, specific, reproducible and simple, which can be applied to real samples detection.  相似文献   

4.
A two-step sol-gel technique was used here to prepare a carbon ceramic electrode modified with nafion and [Ru(bpy)(tpy)Cl]PF6. This involves two steps: first, forming a bulk-modified carbon ceramic electrode with nafion, and then immersing the electrode into a Ru-complex solution (electroless deposition) for a short period of time (5-25 s). Cyclic voltammograms of the resulting surface-modified carbon ceramic electrode show stable and a well-defined redox couple due to Ru(II)/Ru(III) system with surface-confined characteristic. l-Cysteine (CySH) has been chosen as a model to elucidate the electrocatalytic ability of Ru-complex nafion sol-gel composite electrode. Not only the modified electrode shows excellent catalytic activity toward l-cysteine electrooxidation in pH range 3-9, but the antifouling effect of nafion film also increases the reproducibility of results in comparison with CCE modified with homogeneous mixing of graphite powder and Ru-complex (one step sol-gel method). Under the optimized conditions in amperometry method, the concentration calibration range, detection limit and sensitivity were 0.1-100 μM, 20 nM and 50 nA/μM, respectively. The advantages of this modified electrode are good reproducibility, excellent catalytic activity, simplicity of preparation and especially its antifouling properties towards l-cysteine and its oxidation products. Additionally, it is promising as a detector in flow system or chromatography systems.  相似文献   

5.
Speed of sound and density values for ternary systems (amino acid + salt + water): l-isoleucine/l-proline/l-glutamine in aqueous solutions of 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 have been measured for several concentrations of amino acids at different temperatures (303.15, 308.15, 313.15, 318.15, and 323.15 K). Using speed of sound and density data, the thermodynamic parameters such as isentropic compressibility (κs), change in isentropic compressibility (Δκs) and relative change (Δκs/κ0) in isentropic compressibility have been computed. The isentropic compressibility values decrease with increase in the amino acid concentration as well as with temperature. The decrease in κs values with increase in concentration of l-isoleucine/l-proline/l-glutamine in 1.5 M KCl, 1 M KNO3, and 0.5 M K2SO4 has been ascribed to an increase in the number of incompressible zwitterions in solutions, and the formation of ‘zwitterions-ions’ and ‘zwitterions-water dipole’ entities in solutions. The decrease in κs values with increase in temperature has been attributed to the corresponding decrease of κrelax (a relaxational part of compressibility), which is dominant over the corresponding increase of κ (an instantaneous part of compressibility). The trends of variation of Δκs and Δκs/κ0 with variations in solute concentration and temperature have also been discussed in terms of solute-solute and solute-solvent intermolecular/interionic interactions operative in the systems.  相似文献   

6.
l-Pyroglutamic acid succinimidyl ester (l-PGA-OSu) and its isotopic variant (l-PGA[d5]-OSu) were newly synthesized and evaluated as the chiral labeling reagents for the enantioseparation of amino acids, in terms of separation efficiency by reversed-phase chromatography and detection sensitivity by ESI-MS/MS. The enantiomers of amino acids were easily labeled with the reagents at 60 °C within 10 min in an alkaline medium containing triethylamine. Although all the diastereomers derived from 18 proteolytic amino acids could not be satisfactorily separated, the pairs of 9 amino acids were completely separated by reversed-phase chromatography using the small particle (1.7 μm) ODS column (Rs = 1.95–8.05). The characteristic daughter ions, i.e., m/z 84.04 and m/z 89.04, were detected from all the derivatives by the collision induced dissociation of the protonated molecular ions. A highly sensitive detection at a low-fmol level (0.5–3.2 fmol) was also obtained from the selected reaction monitoring (SRM) chromatograms. An isotope labeling strategy using light and heavy l-PGA-OSu for the differential analysis of the dl-amino acids in different sample groups is also presented in this paper. The differential analysis of biological sample (i.e., human serum) and food product (i.e., yogurt) were tried to demonstrate the efficiency of the proposed method. The ratios of the dl-amino acids in human serum samples, spiked with the different concentrations of d-amino acids, were determined by the procedures using l-PGA-OSu and l-PGA[d5]-OSu. The d/l ratios in the two sample groups at different concentrations of amino acids were similar to the theoretical values. Furthermore, the ratios of d/l-alanine values in different yogurt products were comparable to the ratios obtained from the d/l values using only light reagent (i.e., l-PGA-OSu). Consequently, the proposed strategy is useful for the differential analysis not only in biological samples but also in food products.  相似文献   

7.
An amperometric biosensor system which uses screen-printed electrodes to simultaneously detect d-glucose and l-lactate has been developed and applied for simple and rapid determination of d-glucose and l-lactate levels in lactic fermenting beverages. The system was constructed from three-dimensionally layered electrodes. Taking into consideration the effects of easily oxidized substances contained in the samples, ferricyanide ions, which are electrochemically oxidized at a lower voltage, were chosen as a mediator. A linear relationship between steady-state current and concentration was found over a range of 1-100 mM (d-glucose) and 1-50 mM (l-lactate); the variation coefficients were 1.43% (n = 10) and 3.50% (n = 10) for the d-glucose and l-lactate sensors, respectively. When applied to lactic fermenting beverages, there was good agreement between the results obtained by the proposed sensing system and those obtained by the HPLC method. Using the proposed method, assays were completed within 5 min.  相似文献   

8.
A novel amperometric biosensor for the measurement of l-lactate has been developed. The device comprises a screen-printed carbon electrode containing cobalt phthalocyanine (CoPC-SPCE), coated with lactate oxidase (LOD) that is immobilized in mesoporous silica (FSM8.0) using a polymer matrix of denatured polyvinyl alcohol; a Nafion layer on the electrode surface acts as a barrier to interferents. The sampling unit attached to the SPCE requires only a small sample volume of 100 μL for each measurement. The measurement of l-lactate is based on the signal produced by hydrogen peroxide, the product of the enzymatic reaction. The behavior of the biosensor, LOD-FSM8.0/Naf/CoPC-SPCE, was examined in terms of pH, applied potential, sensitivity and operational range, selectivity, and storage stability. The sensor showed an optimum response at a pH of 7.4 and an applied potential of +450 mV. The determination range and the response time for l-lactate were 18.3 μM to 1.5 mM and approximately 90 s, respectively. In addition, the sensor exhibited high selectivity for l-lactate and was quite stable in storage, showing no noticeable change in its initial response after being stored for over 9 months. These results indicate that our method provides a simple, cost-effective, high-performance biosensor for l-lactate.  相似文献   

9.
A glucose based C2-glyco-conjugate, that is, 1-(d-glucopyranosyl-2′-deoxy-2′-iminomethyl)-2-hydroxybenzene (L), has been synthesized in a high yield and characterized. Titration of L with all the 20 naturally occurring amino acids resulted in a large fluorescence intensity enhancement only in case of aromatic amino acids, that is, Phe, Trp, His, and Tyr and not with the others. This has been attributed to the initial formation of 1:1 hydrogen bonded complex followed by π-π interactions present between the aromatic moieties of such complexes as demonstrated by absorption and computational methods. Thus L has been able to recognize aromatic amino acids down to 1.5-3 ppm through switch-on fluorescence behavior.  相似文献   

10.
Ultrasonic velocity and density values have been measured for ternary systems (amino acid/di-peptide + salt + water): l-leucine/l-asparagine/glycylglycine each in 1.5 M aqueous solutions of NaCl or NaNO3 or KNO3 used as solvents for several concentrations of amino acids/di-peptide at different temperatures in the range of 298.15-323.15 K. The ultrasonic velocity values have been found to increase with increase in amino acids/di-peptide concentration and temperature in all the systems. The increase in ultrasonic velocity with increase in concentration has been discussed in terms of electrostatic interactions occurring between terminal groups of zwitterions (NH4+ and COO) and Na+, K+, Cl, NO3 ions. The interactions of water dipoles with cations/anions and with zwitterions have also been taken into consideration. It has been observed that the ion-zwitterion and ion-dipole attractive forces are stronger than those of ion-hydrophobic repulsive forces. These interactions comprehensively introduce the cohesion into solutions under investigation. The cohesive forces are further enhanced on successive increases in solute concentration. Using ultrasonic velocity and density data, the parameters such as isentropic compressibility (κs), change (Δκs) and relative change (Δκs/κ0) in isentropic compressibility, specific acoustic impedance (Z) and relative association (RA) have been computed. The isentropic compressibility values decrease with increase in the concentration of solutes as well as with temperature. The decrease in κs values with increase in concentration of l-leucine, l-asparagine and glycylglycine in 1.5 M aqueous solutions of NaCl, NaNO3 and KNO3 have been explained in terms of an increase in the number of incompressible molecules/zwitterions in solutions and the formation of compact zwitterions-water dipole and zwitterions-ions structures in solutions. The decrease in κs values with increase in temperature has been attributed to the corresponding decrease of κrelax. (relaxational part of compressibility), which is dominant over the corresponding increase of κ (instantaneous part of compressibility). The trends of variations of Δκs, Δκs/κ0, Z and RA with change of concentration and temperature have also been interpreted in terms of various intermolecular/interionic interactions existing in the systems.  相似文献   

11.
Here, we report the synthesis and characterization of a novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its composites with nano-hydroxyapatite (nHA) as potential weight-bearing composite. The 4PLAUMA/nHA ratios of the composites were 1:3, 2:5, 1:2 and 1:1. FTIR and NMR characterization showed urethane and maleate units integrated into the PLA matrix. Energy dispersion and Auger electron spectroscopy confirmed homogeneous distribution of nHA in the polymer matrix. Maximum moduli and strength of the composites of 4PLAUMA/nHA, respectively, are 1973.31 ± 298.53 MPa and 78.10 ± 3.82 MPa for compression, 3630.46 ± 528.32 MPa and 6.23 ± 1.44 MPa for tension, 1810.42 ± 86.10 MPa and 13.00 ± 0.72 for bending, and 282.46 ± 24.91 MPa and 5.20 ± 0.85 MPa for torsion. The maximum tensile strains of the polymer and composites are in the range of 5–93%, and their maximum torsional strains vary from 0.26 to 0.90. The composites exhibited very slow degradation rates in aqueous solution, from approximately 50% mass remaining for the pure polymer to 75% mass remaining for composites with high nHA contents, after a period of 8 weeks. Increase in ceramic content increased mechanical properties, but decreased maximum strain, degradation rate, and swelling of the composites. Human bone marrow stem cells and human endothelial cells adhered and proliferated on 4PLAUMA films and degradation products of the composites showed little-to-no toxicity. These results demonstrate that novel 4-arm poly(lactic acid urethane)-maleate (4PLAUMA) elastomer and its nHA composites may have potential applications in regenerative medicine.  相似文献   

12.
The Sonogel-Carbon electrode is a special class of sol-gel electrode that exhibits favourable mechanic and electric properties to be used as electrochemical sensor. In this study, Sonogel-Carbon modified with l-Cysteine was used to prepare a novel electrochemical sensor. The objective of this novel electrode modification was to seek new electrochemical performances for detection of epinephrine in the presence of uric acid. The response of catalytic current with epinephrine concentration shows a linear relation in the range from 1 × 10−7 to 5 × 10−4 M with a correlation coefficient of 0.998, and a detection limit of 8.7 × 10−8 M. The modified electrode had also been applied to the determination of epinephrine and uric acid in biological samples with satisfactory results. A surface characterisation of this modified electrode was carried out helped by scanning electron microscopy (SEM) and X-Ray energy dispersive spectroscopy (EDS).  相似文献   

13.
A cholapod receptor possessing urea binding sites at C3, C7, and C12 positions and with an intrinsic chiral structure was synthesized, and the binding abilities toward amino acids in both l- and d- forms (Trp, Phe, Leu, and Ala) were studied using 1H NMR spectroscopy, UV-vis spectroscopy and computer simulation. Changes in 1H NMR spectra of the receptor revealed that complexation with amino acids occurred via hydrogen bonding and CH-π interactions. Binding to tryptophan was especially strong, and was found to be enantioselective (Ka=480 M−1 for l-Trp, 260 M−1 for d-Trp). NOESY and computer simulations were used to investigate the structures of the diastereomeric complexes between the receptor and the tryptophan enantiomers. In the case of l-Trp the carboxylate group bound at the two ureas adjacent to C7 and C12, while d-Trp was positioned closer to the urea adjacent to C3.  相似文献   

14.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

15.
Cristina Chamorro 《Tetrahedron》2004,60(49):11145-11157
Screening of a combinatorial CTV-based artificial, synthetic receptor library 1 {1-13, 1-13, 1-13} for binding of a variety d-Ala-d-Ala and d-Ala-d-Lac containing ligands (6-11) was carried out in phosphate buffer (0.1 N, pH=7.0). After screening and Edman sequencing, synthetic receptors were found containing amino acid sequences, which are either characteristic for binding dye labeled d-Ala-d-Ala or d-Ala-d-Lac containing ligands. For example, receptors capable of binding d-Ala-d-Ala containing ligands 6, 7, 9 and 11 contained—almost in all cases—at least one basic amino acid residue—predominantly Lys—in their arms. This was really a striking difference with the arms of the receptors capable of binding d-Ala-d-Lac containing ligands 8 and 10, which usually contained a significant number of polar amino acids (Gln and Ser), especially in ligand 8, but hardly any basic amino acids. Use of different (fluorescent) dye labels showed that the label has a profound, albeit not decisive, influence on the binding by the receptor. A hit from the screening of the CTV-library with FITC-peptidoglycan (6) was selected for resynthesis and validation.  相似文献   

16.
Poly(l-lactic acid) (PLLA) nonwoven fabric was obtained by using a carbon dioxide laser-thinning method. The obtained PLLA nonwoven fabric was made of endless microfibers with a uniform diameter without droplets. The fiber diameter can be varied by controlling an airflow rate supplied to the air jet, a supplying speed of an original fiber into a laser-irradiating point, and laser intensity. When the microfiber prepared by irradiating the laser operated at a laser intensity of 66 W cm−2 to the original fiber supplied at Ss = 0.1 m min−1 was dragged at an airflow rate of 30 L min−1, the thinnest microfiber with an average diameter of 3.4 μm was obtained. The obtained microfiber had a degree of crystallinity of 45%, and the degree of crystal orientation of 84%. The existence of highly oriented crystallites suggests that a flow-induced crystallization occurred during the laser-thinning.  相似文献   

17.
Lawrence NS  Deo RP  Wang J 《Talanta》2004,63(2):443-449
The use of a carbon-nanotube paste (CNTP) electrode provides an effective means for the determination of homocysteine. A decrease of ca. 120 mV in the overpotential for the oxidation of homocysteine compared to a traditional carbon paste electrode, is reported along with greatly enhanced signal-to-noise characteristics. The analytical parameters have been assessed with a linear range from 5 to 200 μM and a detection limit of 4.6 μM. Furthermore, the generic nature of this increased reactivity of the CNTP surface towards thiol moieties has been demonstrated with cysteine, glutathione and n-acetylcysteine, providing a greatly enhanced electrochemical response compared to the carbon paste electrode.  相似文献   

18.
Oxidative and enzymatic degradations of l-tyrosine based polyurethanes were studied for biomaterial applications. Oxidative degradation was performed with 0.1 M cobalt chloride (CoCl2) in hydrogen peroxide solutions at 37 °C and the degradation was assessed by ATR-FTIR. Results indicate that polyurethane with polyethylene glycol (PEG) shows soft segment degradation while polyurethane based on polycaprolactone (PCL) shows hard segment degradation. Enzymatic degradation of the polyurethanes was studied using proteolytic enzyme α-chymotrypsin in phosphate buffer solution (pH 7.4) at 37 °C. The enhanced degradability of l-tyrosine based polyurethanes is due to both the presence of amino acid based chain extender and the action of enzyme. The changes in the morphology of polyurethanes were analyzed by SEM. The results of the degradation study were correlated to the structure of the polyurethanes.  相似文献   

19.
A novel electrode was developed through electrodepositing gold nanoparticles (GNPs) on overoxidized-polyimidazole (PImox) film modified glassy carbon electrode (GCE). The combination of GNPs and the PImox film endowed the GNPs/PImox/GCE with good biological compatibility, high selectivity and sensitivity and excellent electrochemical catalytic activities towards ascorbic acid (AA), dopamine (DA), uric acid (UA) and tryptophan (Trp). In the fourfold co-existence system, the peak separations between AA–DA, DA–UA and UA–Trp were large up to 186, 165 and 285 mV, respectively. The calibration curves for AA, DA and UA were obtained in the range of 210.0–1010.0 μM, 5.0–268.0 μM and 6.0–486.0 μM with detection limits (S/N = 3) of 2.0 μM, 0.08 μM and 0.5 μM, respectively. Two linear calibrations for Trp were obtained over ranges of 3.0–34.0 μM and 84.0–464.0 μM with detection limit (S/N = 3) of 0.7 μM. In addition, the modified electrode was applied to detect AA, DA, UA and Trp in samples using standard addition method with satisfactory results.  相似文献   

20.
Two sulfur-containing amino acids, dl-cysteine (Cys) and dl-penicillamine (PenA), were condensed with ninhydrin to form their spirothiazolidine derivatives. These were separated by HPLC using α-acid glycoprotein (AGP) and β-cyclodextrin (β-CD) columns. The resolution conditions were optimized and the results were compared. Since the method provided resolution greater than 2 it was also applied to preparative separation. After separation, each of them was detagged using Zn dust and 10% aqueous trifluoroacetic acid. For analytical purposes dinitrophenyl (DNP) derivatives of dl-Cys and dl-PenA were also prepared and were resolved on both the columns. The detection was carried out using photodiode array detection system at 231 nm. The limits of detection were found to be 0.01% and 0.004% for spirothiazolidine carboxylic acid and DNP derivatives, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号