首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have studied the growth of cerium films on Rh(1 1 1) using STM (scanning tunneling microscopy), LEED (low energy electron diffraction), XPS (X-ray photoelectron spectroscopy) and AES (Auger electron spectroscopy). Measurements of the Ce films after room temperature deposition showed that Ce is initially forming nanoclusters in the low coverage regime. These clusters consist of 12 Ce atoms and have the shape of pinwheels. At a coverage of 0.25 ML (monolayer, ML) an adatom layer with a (2 × 2) superstructure is observed. Above 0.4 ML, Rh is diffusing through pinholes into the film, forming an unstructured mixed layer. Annealing at 250 °C leads to the formation of ordered Ce-Rh compounds based on the bulk compound CeRh3. At a coverage of 0.1 ML, small ordered (2 × 2) surface alloy domains are observed. The exchanged Rh atoms form additional alloy islands situated on the pure Rh(1 1 1) surface, showing the same (2 × 2) superstructure as the surface alloy. At a coverage of 0.25 ML, the surface is completely covered by the surface alloy and alloy islands. The (2 × 2) structure is equivalent to a (1 1 1)-plane of CeRh3, contracted by 6%. Annealing a 1 ML thick Ce layer leads to a flat surface consisting of different rotational domains of CeRh3(1 0 0). The Rh needed for alloy formation comes from 50 Å deep pits in the substrate. Finally we show that LEIS (low energy ion scattering) is not suitable for the characterization of Ce and CeRh films due to strong effects of neutralization.  相似文献   

2.
S. Murphy  V. Usov  I.V. Shvets 《Surface science》2007,601(23):5576-5584
The morphology of ultrathin Ni films on Mo(1 1 0) and W(1 0 0) has been studied by low-energy electron diffraction and scanning tunneling microscopy. Ni films grow pseudomorphically on Mo(1 1 0) at 300 K for a coverage of 0.15 ML. A (8 × 1) structure is found at 0.4 ML, which develops into a (7 × 1) structure by 0.8 ML. The film undergoes a structural change to fcc Ni(1 1 1) at 6 ML. The growth mode switches from layer-by-layer to Stranski-Krastanov between 4 ML and 6 ML. Annealing at around 850 K results in alloying of submonolayer films with the substrate, while for higher coverages the Ni agglomerates into nanowedge islands. Ni films grow pseudomorphically on W(1 0 0) up to a coverage of around 2 ML at 300 K, above which there is a structural change from bcc to hcp Ni with the epitaxial relationship . This is accompanied by the formation of orthogonal domains of uniaxial strain-relieving dislocations from the third layer of the film. For coverages up to 1 ML the growth proceeds by formation of two-dimensional islands, but shifts to three-dimensional growth by 2 ML with rectangular islands aligned along the 〈0 1 1〉 substrate directions. Annealing at around 550 K results in agglomeration of Ni into larger islands and increasing film roughness.  相似文献   

3.
This study investigates ultra-thin potassium chloride (KCl) films on the Si(1 0 0)-2 × 1 surfaces at near room temperature. The atomic structure and growth mode of this ionic solid film on the covalent bonded semiconductor surface is examined by synchrotron radiation core level photoemission, scanning tunneling microscopy and ab initio calculations. The Si 2p, K 3p and Cl 2p core level spectra together indicate that adsorbed KCl molecules at submonolayer coverage partially dissociate and that KCl overlayers above one monolayer (ML) have similar features in the valance band density of states as those of the bulk KCl crystal. STM results reveal a novel c(4 × 4) structure at 1 ML coverage. Ab initio calculations show that a model that comprises a periodic pyramidal geometry is consistent with experimental results.  相似文献   

4.
The structure, energetics and magnetic properties of the quasihexagonal reconstruction of the Ir(1 0 0) surface and nanostructures formed by Fe atoms on this surface have been investigated using first-principles density functional theory with generalized gradient corrections. We find the reconstructed (1 × 5) surface to be 0.10 eV/(1 × 1) area lower in energy than the unreconstructed surface and we demonstrate that first-principles calculations can achieve quantitative agreement with experiment even for such long-period and deep-going reconstructions. For Fe coverage of 0.4 monolayers (ML) we have studied the stripe-like structure with biatomic Fe rows placed in the troughs of the (1 × 5)-reconstructed surface. Results of nonmagnetic calculations agree well with the structure inferred from STM data. Higher Fe coverages lead to a de-reconstruction of the Ir substrate. At 0.8 ML coverage a surface compound with composition Fe4Ir is formed, which shows an appreciable buckling. In this case, a ferromagnetic calculation leads to good agreement with the low-temperature LEED data. We predict that the (1 × 5) periodicity of the mixed interface layer will persist also in thicker films with a pure Fe surface. Films with 1-4 ML Fe are predicted to be tetragonally distorted and ferromagnetic, with an axial ratio corresponding well to an elastic distortion of the Fe lattice.  相似文献   

5.
We present the results of scanning tunneling microscopy (STM) and photoemission spectroscopy (PES) of the Ta/Si(1 1 1)-7 × 7 system after deposition of Ta at substrate temperatures from 300 to 1250 K. The coverage of Ta varied from 0.05 up to 2.5 of a monolayer (ML). STM shows that at 300 K and coverage less than 1 ML, a disordered chemisorbed phase is formed. Deposition on a hot surface (above 500 K) produces round 3D clusters randomly distributed on the surface. Cluster height and their diameter are found to change drastically with annealing temperature and the Ta coverage. Analysis of photoemission data of the Si 2p core levels shows that at room temperature and at coverage ?1 ML core level binding energy shifts and intensity variations of Si surface related components are observed, which clearly indicate that the reaction starts already at 300 K. Shifts in the binding energy, changes of the peak shapes and intensity of the Ta 4f doublet at higher temperatures can be explained by the formation of stable silicide on the surface.  相似文献   

6.
The growth and the crystalline and electronic structure of Ni deposited on single crystalline Cu(1 1 1) were studied by scanning tunnelling microscopy (STM), grazing incidence X-ray diffraction (GIXD) and angle-resolved photoemission spectroscopy (ARPES). In the early stages of growth monoatomic-high flat Ni islands, partially covered by Cu migrating from the surface, are observed. Starting from a pseudomorphic epitaxial relationship the in-plane lattice parameter progressively relaxes with increasing coverage. For a 20 monolayer (ML) thick deposit the in-plane lattice parameter is still found halfway between the bulk Ni and Cu lattice parameters. ARPES data also rule out the layer-by-layer growth and provide the values of the Ni exchange splitting.  相似文献   

7.
We studied the low temperature (T ? 130 K) growth of Ag on Si(0 0 1) and Si(1 1 1) flat surfaces prepared by Si homo epitaxy with the aim to achieve thin metallic films. The band structure and morphology of the Ag overlayers have been investigated by means of XPS, UPS, LEED, STM and STS. Surprisingly a (√3 × √3)R30° LEED structure for Ag films has been observed after deposition of 2-6 ML Ag onto a Si(1 1 1)(√3 × √3)R30°Ag surface at low temperatures. XPS investigations showed that these films are solid, and UPS measurements indicate that they are metallic. However, after closer STM studies we found that these films consists of sharp Ag islands and (√3 × √3)R30°Ag flat terraces in between. On Si(0 0 1) the low-temperature deposition yields an epitaxial growth of Ag on clean Si(0 0 1)-2 × 1 with a twinned Ag(1 1 1) structure at coverage’s as low as 10 ML. Furthermore the conductivity of few monolayer Ag films on Si(1 0 0) surfaces has been studied as a function of temperature (40-300 K).  相似文献   

8.
We have studied the dislocation structures that occur in films of Ag, Au, and Ag0.5Au0.5 alloy on a Ru(0 0 0 1) substrate. Monolayer (ML) films form herringbone phases while films two or more layers thick contain triangular patterns of dislocations. We use scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) to determine how the film composition affects the structure and periodicity of these ordered structures. One layer of Ag forms two different herringbone phases depending on the exact Ag coverage and temperature. Low-energy electron microscopy (LEEM) establishes that a reversible, first-order phase transition occurs between these two phases at a certain temperature. We critically compare our 1 ML Ag structures to conflicting results from an X-ray scattering study [H. Zajonz et al., Phys. Rev. B 67 (2003) 155417]. Unlike Ag, the herringbone phases of Au and AgAu alloy are independent of the exact film coverage. For two layer films in all three systems, none of the dislocations in the triangular networks thread into the second film layer. In all three systems, the in-plane atomic spacing of the second film layer is nearly the same as in the bulk. Film composition does, however, affect the details of the two layer structures. Ag and Au films form interconnected networks of dislocations, which we refer to as “trigons.” In 2 ML AgAu alloy, the dislocations form a different triangular network that shares features of both trigon and moiré structures. Yet another well-ordered structure, with square symmetry, forms at the boundaries of translational trigon domains in 2 ML Ag films but not in Au films.  相似文献   

9.
We investigated the growth of Fe nanostructured films on c(2 × 2)-N/Cu(1 0 0) surface with Fe K-edge X-ray absorption fine structure (XAFS) in the near edge and in the extended energy region. The high photon flux of the incident X-rays allowed us to perform multishell analysis of the XAFS oscillations for Fe coverage ΘFe < 1 ML. This data analysis yields a detailed investigation of the atom geometry and some insights in the film morphology. At ΘN < 0.5 ML (N saturation coverage) there is absence of contribution to XAFS from N atoms. First shell analysis of linearly polarized XAFS gives Fe-Fe (or Fe-Cu) bond length values varying between R1 = 2.526 ± 0.006 Å at the highest Fe coverage (3 ML ) and R1 = 2.58 ± 0.01 Å at ΘFe = 0.5 ML, ΘN = 0.3 ML, with incidence angle Θ = 35°. These values are different from the case of bcc Fe (R = 2.48 Å), and compatible with fcc Fe (R1 = 2.52 Å) and fcc Cu (R1 = 2.55 Å). At the Fe lowest coverage (ΘFe = 0.5 ML) the dependence of R1 on the incidence angle indicates expansion of the outmost layer. Near edge spectra and multishell analysis can be well reproduced by fcc geometry with high degree of static disorder. At N saturation pre-coverage (ΘN = 0.5 ML) the XAFS analysis has to keep into account the Fe-N bonding. The results suggest two different adsorption sites: one with Fe in a fcc hollow site, surrounded by other metal atoms as nearest neighbours, and one resulting from an exchange with a Cu atom underneath the N layer.  相似文献   

10.
The adsorption of germanium on Ag(1 1 0) has been investigated by scanning tunnelling microscopy (STM), as well as surface X-ray diffraction (SXRD). At 0.5 germanium monolayer (ML) coverage, Low Energy Electron Diffraction (LEED) patterns reveals a sharp c(4 × 2) superstructure. Based on STM images and SXRD measurements, we present an atomic model of the surface structure with Ge atoms forming tetramer nano-clusters perfectly assembled in a two-dimensional array over the silver top layer. The adsorption of the germanium atoms induces a weak perturbation of the Ag surface. Upon comparison with results obtained on the (1 1 1) and (1 0 0) faces, we stress the role played by the relative interactions between silver and germanium on the observed surface structures.  相似文献   

11.
The oxidation of Ni(1 0 0) and Ni(1 1 1) at elevated temperatures and large oxygen exposures, typical of the methods used in the preparation of NiO(1 0 0) films for surface studies, has been investigated by medium energy ion scattering (MEIS) using 100 keV H+ incident ions. Oxide film growth proceeds significantly faster on Ni(1 1 1) than on Ni(1 0 0), but on both surfaces oxide penetration occurs to depths significantly greater than 100 Å with total exposures of 1200 and 6000 L respectively. The metal/oxide interface is extremely rough, with metallic Ni extending to the surface, even for much thicker oxide films on Ni(1 1 1). On Ni(1 1 1), NiO growth occurs with the (1 0 0) face parallel to the Ni(1 1 1) surface and the close-packed 〈1 1 0〉 directions parallel. On Ni(1 0 0) the MEIS blocking curves cannot be reconciled with a single orientation of NiO(1 0 0) (with the 〈1 1 0〉 directions parallel) on the surface, but is consistent with the substantial orientational disorder (including tilt) previously identified by spot-profile analysis LEED.  相似文献   

12.
We studied the growth mode and electronic properties of ultra-thin silver films deposited on Ni(1 1 1) surface by means of scanning tunnelling microscopy (STM) and angle resolved photoemission spectroscopy (ARPES). The formation of the 4d-quantum well states (QWS) was analysed within the phase accumulation model (PAM). The electronic structure of the 1 ML film is consistent with the silver layer which very weakly interacts with the supporting surface. The line-shape analysis of Ag-4dxz,yz QWS spectrum support the notion of strong localization of these states within the silver layer. The asymmetry of the photoemission peaks implies that the decay of the photo-hole appears to be influenced by the dynamics of the electrons in the supporting surface.  相似文献   

13.
CoxNi1−x/Cu3Au(1 0 0) with x ? 11% was prepared at room temperature to study the strain relaxation and their correlation with the spin-reorientation transition. The vertical interlayer distance relaxed from 1.66 Å (fct) to 1.76 Å (fcc) while the thickness increased from 8 ML to 18 ML. Such rapid strain relaxation with thickness was attributed to the larger lattice mismatch between CoxNi1−x and Cu3Au(1 0 0) (η ∼ −6.5%). The smooth change for crystalline structure was observed during strain relaxation process in which the crystalline structure seems irrespective of the alloy composition. To explain the strain relaxation, a phenomenological model was proposed. We provide a physical picture that the deeper layers may not relax while the surface layer start to relax. This assumption is based on the several experimental studies. Using the strain averaged from all layers of thin film as the volume strain of magneto-elastic anisotropy energy, the interrelation between strain relaxation and spin reorientation transition can be well described in a Néel type magneto-elastic model.  相似文献   

14.
H.Y. Ho 《Surface science》2007,601(3):615-621
The initial growth and alloy formation of ultrathin Co films deposited on 1 ML Ni/Pt(1 1 1) were investigated by Auger electron spectroscopy (AES), low energy electron diffraction (LEED), and ultraviolet photoelectron spectroscopy (UPS). A sequence of samples of dCo Co/1 ML Ni/Pt(1 1 1) (dCo = 1, 2, and 3 ML) were prepared at room temperature, and then heated up to investigate the diffusion process. The Co and Ni atoms intermix at lower annealing temperature, and Co-Ni intermixing layer diffuses into the Pt substrate to form Ni-Co-Pt alloys at higher annealing temperature. The diffusion temperatures are Co coverage dependent. The evolution of UPS with annealing temperatures also shows the formation of surface alloys. Some interesting LEED patterns of 1 ML Co/1 ML Ni/Pt(1 1 1) show the formation of ordered alloys at different annealing temperature ranges. Further studies in the Curie temperature and concentration analysis, show that the ordered alloys corresponding to different LEED patterns are NixCo1−xPt and NixCo1−xPt3. The relationship between the interface structure and magnetic properties was investigated.  相似文献   

15.
R. Koch 《Surface science》2006,600(20):4694-4701
The (2 × n) superstructure of Si(0 0 1) consists of elongated (2 × 1) reconstructed stripes separated by a dimer-vacancy line every few nanometers, thus offering a means to obtain a nanopattered Si(0 0 1) surface. Scanning tunneling microscopy (STM) investigations of Si(0 0 1) substrates that were deoxidized at 880-920 °C reveal that the formation of the (2 × n) depends strongly on the Si coverage of the topmost surface layer. It forms only in a narrow coverage window ranging from 0.6 to 0.8 ML. Systematic Monte Carlo simulations by an algorithm that combines the diffusion of monomers and dimers with the simultaneous deposition of Si onto the Si(0 0 1) surface, corroborate the STM results and suggest Si deposition as a viable alternative for introducing dimer vacancies in a well-defined manner.  相似文献   

16.
Pd-induced surface structures on Si(1 1 3) have been studied by scanning tunneling microscopy (STM) and X-ray photoelectron spectroscopy (XPS). In the initial process of the Pd adsorption below 0.10 ML, Pd silicide (Pd2Si) clusters are observed to form randomly on the surface. By increasing the Pd coverage to 0.10 ML, the clusters cover the entire surface, and an amorphous layer is formed. After annealing the Si(1 1 3)-Pd surface at 600 °C, various types of islands and chain protrusions appears. The agglomeration, coalescence and crystallization of these islands are observed by using high temperature (HT-) STM. It is also found by XPS that the islands correspond to Pd2Si structure. On the basis of these results, evolution of Pd-induced structures at high temperatures is in detail discussed.  相似文献   

17.
We utilized temperature programmed desorption (TPD), X-ray photoelectron spectroscopy (XPS), electron energy loss spectroscopy (ELS), and low energy electron diffraction (LEED) to investigate the oxidation of Pt(1 0 0)-hex-R0.7° at 450 K. Using an oxygen atom beam, we generated atomic oxygen coverages as high as 3.6 ML (monolayers) on Pt(1 0 0) in ultrahigh vacuum (UHV), almost 6 times the maximum coverage obtainable by dissociatively adsorbing O2. The results show that oxidation occurs through the development of several chemisorbed phases prior to oxide growth above about 1 ML. A weakly bound oxygen state that populates as the coverage increases from approximately 0.50 ML to 1 ML appears to serve as a necessary precursor to Pt oxide growth. We find that increasing the coverage above about 1 ML causes Pt oxide particle growth and significant surface disordering. Decomposition of the Pt oxide particles produces explosive O2 desorption characterized by a shift of the primary TPD feature to higher temperatures and a dramatic increase in the maximum desorption rate with increasing coverage. Based on thermodynamic considerations, we show that the thermal stability of the surface Pt oxide on Pt single crystal surfaces significantly exceeds that of bulk PtO2. Furthermore, we attribute the high stability and the acceleratory decomposition rates of the surface oxide to large kinetic barriers that must be overcome during oxide formation and decomposition. Lastly, we present evidence that structurally similar oxides develop on both Pt(1 1 1) and Pt(1 0 0), therefore concluding that the properties of the surface Pt oxide are largely insensitive to the initial structure of the Pt single crystal surface.  相似文献   

18.
The electronic structure of 3d transition-metal atoms on face-centered cubic Co(0 0 1) substrate is determined within ab initio density functional calculations in the gradient corrected approach. Calculations are performed for ordered surface configuration with coverage equal to 0.25, 0.5, 0.75 and 1 ML. For Ni and Fe a ferromagnetic coupling with the Co atoms is always obtained independently of the concentration. Moreover the values of the magnetic moments remain similar. For Mn a ferromagnetic coupling is obtained for low-coverage whereas an in-plane antiferromagnetic coupling is found for a complete Mn overlayer on Co(0 0 1). Also, for Sc, Ti, V and Cr a drastic modification of the magnetic map is observed when we go from low-coverage to the monolayer. Cr (Mn) adatoms present antiferromagnetic (ferromagnetic) coupling with Co(0 0 1) for x = 0.25 whereas an in-plane antiferrimagnetic coupling is obtained for x = 1.00.  相似文献   

19.
The hydrogenation of ethylene on Ni(1 0 0) surface has been studied by TDS. The decrease in the bonding energy with increasing coverage is revealed for both of adsorbed hydrogen and ethylene by the shift of desorption to lower temperatures. Ethane formation is only observed on the preadsorbed hydrogen coverage exceeding 0.5 monolayer (ML), coupled with the growth of H2 shoulder peak at lower temperatures. Further increase of H coverage to saturation reduces the bonding energy of subsequently adsorbed ethylene by 15 kJ/mol and decreases the saturation coverage of ethylene to about one-third on the clean surface. This leads to the shift of ethane desorption from 250 to 220 K and an appearance of additional ethane peak at 180 K. The latter ethane formation coincides with the hydrogenation of surface ethyl species derived from ethyl iodide as a precursor. It indicates that the rate of ethyl formation on the surface would be comparable to that of subsequent hydrogen addition to the surface ethyl species in the hydrogenation of ethylene when the preadsorbed hydrogen coverage approaches 1.0 ML.  相似文献   

20.
Ni films between 1 and 20 monolayers (ML) thick are deposited at room temperature on clean and (√2×2√2)R45° reconstructed--via oxygen adsorption--Cu(0 0 1). A significant expansion of the out-of-plane Ni phase by about 5 ML is revealed by ferromagnetic resonance experiments. This shift of the spin reorientation transition is attributed to a huge change of about 90 μeV/atom in the surface anisotropy due to the presence of half a monolayer of oxygen atoms on the top of Ni. Furthermore, the growth of Ni on the preoxidized Cu surface is found to be closer to the layer-by-layer one as compared to the growth on the clean Cu(0 0 1) due to the presence of oxygen which acts as a surfactant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号