首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
A new method for the determination of nitrobenzene (NB) by differential pulse voltammetry (DPV) based on an adsorptive stripping technique was developed. Cyclic voltammetry (CV) was used in a comparative investigation into the electrochemical reduction of NB at a glassy carbon electrode (GCE). With this electrode, the sharp peak of NB appeared at −0.71 V (vs. Ag/AgCl). The experimental parameters were optimized. Studies on the effect of pH on the peak height and peak potential were carried out over the pH range ca. 9.0–11.5 with sodium carbonate/sodium hydrogen carbonate buffer solution. A solution of pH 9.9 was chosen as analytical medium. Cathodic peak currents were found to be linearly related to the concentration of NB over the range ca. 12.3–1.23 × 104 μg L−1 with relative standard deviations of ca. 3.26–6.75%. The detection limit of NB in water was 5.42 μg L−1. The interference of organic and inorganic species on the voltammetric response was also studied. The proposed method was applied to the determination of NB in wastewater samples with an average recovery of ca. 95.9–102.4%.  相似文献   

2.
A novel and sensitive method based on combination of two immiscible organic solvents hollow fiber-based liquid-liquid-liquid microextraction and corona discharge ion mobility spectrometry (HF-LLLME-CD-IMS) was employed for the analysis of clomipramine in human urine and plasma. The effect of formic, acetic and propionic acid as the reagent gas (dopant) on the corona discharge ion mobility signal was investigated. The influence of dopant amount was also studied. Optimum mass flow rates of the dopants were 3.7, 1.1 and 1.0 μmol min(-1) for formic, acetic and propionic acid, respectively. Experimental parameters influencing the extraction efficiency of HF-LLLME, such as NaOH concentration as donor solution, ionic strength of the sample, stirring rate, and extraction time were investigated and optimized. Under the optimum conditions, analytical parameters such as linearity, precision and limit of detection were also evaluated. The linear dynamic range was from 1 to 100 μg L(-1) (r(2)=0.9980) and the limit of detection was 0.35 μg L(-1). Intra- and inter-day precisions were satisfactory with a relative standard deviation (RSD) of 5.9 and 6.7%, respectively. The proposed method was satisfactorily applied for the determination of clomipramine in human plasma and urine.  相似文献   

3.
Hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) followed by flow injection analysis and diode array detection (FIA-DAD) was applied as a simple and sensitive quantitative method for the determination of phenazopyridine in urine and plasma samples. Flow injection system included a conventional HPLC system (without a chromatographic column) and a diode array detector. The extraction of phenazopyridine was carried out using diphenyl ether as the organic phase for filling the pores of the hollow fiber wall, and 0.1 M H(2)SO(4) solution as acceptor phase in the lumen of the fiber. The factors affecting the HF-LLLME and flow injection analysis including type of organic solvent, pH of donor phase, extraction temperature, extraction time, stirring rate, and pH of mobile phase were investigated and the optimal extraction conditions were established. With the consumption of 5 mL of sample solution, the enrichment factor was about 230. The limit of detection was 0.5 μg/L with inter- and intra-day precision being (RSD%) 6.9 and 4.9, respectively. Excellent linearity was found between 5 and 200 μg/L.  相似文献   

4.
This paper describes an extraction method using a polypropylene membrane supporting dihexyl ether (three-phase hollow fiber-based liquid phase microextraction (HF-LPME)) for the analysis of several pharmaceuticals (salicylic acid (SAC), ibuprofen (IBU) and diclofenac (DIC)) followed by a HPLC determination using a monolithic silica type HPLC column, that allows lower retention times than the usual packed columns with adequate resolution. Detection was realized by means of a coupled in series diode array (DAD) and fluorescence (FLD) detectors. HF-LPME is a relatively new technique employed in analytical chemistry for sample pretreatment which offers more selectivity and sensitivity than any traditional extraction technique. Detection limits by DAD are 12, 53 and 40 ng mL−1 for salicylic acid, diclofenac and ibuprofen, respectively and by FLD 7 and 2 ng mL−1 for salicylic acid, and ibuprofen. The method has been successfully applied to their direct determination in human urine and the results obtained demonstrated that could be also applied to the determination of the corresponding metabolites.  相似文献   

5.
Here we report the characterization of an electrochemical mercury (Hg2+) sensor constructed with a methylene blue (MB)-modified and thymine-containing linear DNA probe. Similar to the linear probe electrochemical DNA sensor, the resultant sensor behaved as a “signal-off” sensor in alternating current voltammetry and cyclic voltammetry. However, depending on the applied frequency or pulse width, the sensor can behave as either a “signal-off” or “signal-on” sensor in square wave voltammetry (SWV) and differential pulse voltammetry (DPV). In SWV, the sensor showed “signal-on” behavior at low frequencies and “signal-off” behavior at high frequencies. In DPV, the sensor showed “signal-off” behavior at short pulse widths and “signal-on” behavior at long pulse widths. Independent of the sensor interrogation technique, the limit of detection was found to be 10 nM, with a linear dynamic range between 10 nM and 500 nM. In addition, the sensor responded to Hg2+ rather rapidly; majority of the signal change occurred in <20 min. Overall, the sensor retains all the characteristics of this class of sensors; it is reagentless, reusable, sensitive, specific and selective. This study also highlights the feasibility of using a MB-modified probe for real-time sensing of Hg2+, which has not been previously reported. More importantly, the observed “switching” behavior in SWV and DPV is potentially generalizable and should be applicable to most sensors in this class of dynamics-based electrochemical biosensors.  相似文献   

6.
Li P  Duan J  Hu B 《Electrophoresis》2008,29(14):3081-3089
A hollow fiber-based liquid-liquid-liquid microextraction (HF-LLLME) combined with on-line large-volume sample stacking (LVSS) has been developed for the speciation of organomercury in biological samples by CE with UV detection. Separation was achieved in less than 11 min with an electrolyte consisting of 35 mM sodium tetraborate at pH 9.1. In LVSS, a reverse electrode polarity-stacking mode (REPSM) was applied as on-line preconcentration strategy. In HF-LLLME, the analytes were extracted from 12 mL volume of sample solution (pH adjusted to 3.0) into bromobenzene impregnated in the pores of the hollow fiber, and into an acceptor solution of L-cysteine (15 microL, 0.02% w/v) inside the hollow fiber. Under the optimized conditions, concentration factors of 2610-4580 were achieved and LODs in the range of 0.03-0.14 microg/L were feasible. The linearity was found to be over two orders of magnitude with correlation coefficient of 0.9991-0.9996. The developed method has been validated using a certified reference material (DORM-2, dogfish muscle), and the determined values coincided very well with the certified values. The method was also applied to the speciation of organomercury in three kinds of fish samples and human hair samples.  相似文献   

7.
Bromadiolone, a commercially used anticoagulant rodenticide, was determined in tissues of various animals by differential pulse voltammetry with a carbon-paste electrode. Under the most suitable experimental conditions (step potential of 25?mV?s?1 and 0.2?mol?L?1 acetate buffer, pH 4.2), the limit of detection was 0.5?ng?mL?1. The electroanalytical method was consequently used to investigate the bromadiolone transport within the food chain. Pheasants were exposed to bromadiolone and then used as feed for a fox. The average levels were 528 and 198?ng of bromadiolone per gram of fresh weight of liver of pheasant and fox, respectively. Due to the surprisingly lower content of bromadiolone in the latter, a basic biochemical analysis, particularly blood coagulation, was performed. Among the parameters studied (thrombin time, prothrombin time, activated partial thromboplastin time, and fibrinogen), there was prolongation of the prothrombin time and activated partial thromboplastin time.  相似文献   

8.
A new, simple and selective differential pulse voltammetry (DPV) method for the simultaneous determination of selected drugs in model solutions and spiked human urine samples with prior extraction was developed and validated. The objects of analysis were paracetamol, furosemide, dipyrone, cefazolin and dexamethasone belonging to four different therapeutic groups (antibiotics, analgesic, demulcent and diuretic). Analytical methods for the preparation of urine samples for voltammetric analysis (liquid-liquid extraction--LLE and solid-phase extraction--SPE) were worked out and optimized. Hanging mercury drop electrode (HMDE) and graphite electrode were used as working electrodes. Reference electrode was Ag|AgCl|KCl((sat.)), whereas auxiliary electrode--platinum electrode. The optimal conditions for quantitative determination were obtained in a Britton-Robinson (BR) buffer at pH 2.4. Quantification was performed by means of calibration curve and standard addition methods. The calibration curves of analysed drugs are linear within the range of concentration: 6.61-66.10, 6.05-54.42, 6.00-65.00, 4.20-33.58 and 0.51-3.06 microM for paracetamol, furosemide, dipyrone, cefazolin and dexamethasone, respectively. The levels of analysed compounds in human urine can be successfully determined using this developed method with no matrix effect.  相似文献   

9.
Yongchun Zhu  Jingjing Guan  Lu Cao  Jie Hao 《Talanta》2010,80(3):1234-1238
Electrochemical solid phase nano-extraction, a novel sample preparation technique, was used for the determination of trace iodide in iodised table salt based on the silver sulfate nanoparticle-modified carbon paste electrode. Electrochemical solid phase nano-extraction was realized in the exchange between the sulfate anion in nanoparticles and an iodide anion from aqueous solution. The released silver cation serves as the electrochemical probe for the determination of iodide. The extraction follows a Freundlich adsorption isotherm, and can be used in the detection of iodide in the concentration range 5.0 × 10−12-4.0 × 10−9 M. The amount of iodide in iodised table salt was determined as 0.875 ± 0.002 μg/g, which is about 2.5% of the addition amount of iodate with a relative deviation of 5.92% and a standard addition recovery of 90-110%. The large amounts of chloride and iodate did not interfere with the detection.  相似文献   

10.
The presence of trace neutral organonitrogen compounds as carbazole and indole in derivative petroleum fuels plays an important role in the car's engine maintenance. In addition, these substances contribute to the environmental contamination and their control is necessary because most of them are potentially carcinogenic and mutagenic. For those reasons, a reliable and sensitive method was proposed for the determination of neutral nitrogen compounds in fuel samples, such as gasoline and diesel using preconcentration with modified silica gel (Merck 70-230 mesh ASTM) followed by differential pulse voltammetry (DPV) technique on a glassy carbon electrode. The electrochemical behavior of carbazole and indole studied by cyclic voltammetry (CV) suggests that their reduction occurs via a reversible electron transfer followed by an irreversible chemical reaction. Very well resolved diffusion controlled voltammetric peaks were obtained in dimethylformamide (DMF) with tetrabutylammonium tetrafluoroborate (TBAF4 0.1 mol L−1) for indole (−2.27 V) and carbazole (−2.67 V) versus Ag|AgCl|KClsat reference electrode. The proposed DPV method showed a good linear response range from 0.10 to 300 mg L−1 and a limit of detection (L.O.D) of 7.48 and 2.66 μg L−1 for indole and carbazole, respectively. The results showed that simultaneous determination of indole and carbazole presents in spiked gasoline samples were 15.8 ± 0.3 and 64.6 ± 0.9 mg L−1 and in spiked diesel samples were 9.29 ± 1 and 142 ± 1 mg L−1, respectively. The recovery was evaluated and the results shown the values of 88.9 ± 0.4 and 90.2 ± 0.8% for carbazole and indole in fuel determinations. The proposed method was also compared with UV-vis spectrophotometric measures and the results obtained for the two methods were in good agreement according to the F and t Student's tests.  相似文献   

11.
The voltammetric behaviour of three 5-nitroimidazoles,metronidazole,tinidazole and ornidazole,was investigated,and a method was developed for the simultaneous determination of these compounds,based on their reduction at a hanging mercury drop electrode(HMDE) in pH 8.95 buffer with differential pulse voltammetric(DPV) approach.Well defined voltammetric waves with peak potentials of -692,-640 and -652 mV were observed for these compounds,respectively.It is difficult to determine them individually from their mixtures without preseparation,for their voltammetric peaks overlapped seriously,so the chemometrics were used to resolve the overlapped voltammogram and quantify the mixtures.The proposed method was successfully applied to the determination of three 5-nitroimidazoles in milk and honey samples.  相似文献   

12.
A reliable method for simultaneous determination of three antibiotic drugs(levofloxacin,gatifloxacin and lomefloxacin) by differential pulse stripping voltammetry(DPSV) in Britton-Robinson buffer(pH 7.96) was presented.The method is based on adsorptive accumulation of the antibacterial drugs on a hanging mercury dropping electrode(HMDE),followed by the reduction of the adsorptive species by the technique of DPSV.Optimal conditions,the deposition time of 80 s,the deposition potential of—1250 mV,and the scan rate of 25 mV/s,were obtained.The linear concentration ranges of 0.010-0.080μg/mL were obtained for all these three antibiotic drugs,while the detection limits were 2.38,3.20 and 1.60ng/mL for levofloxacin,gatifloxacin and lomefloxacin,respectively.In this work,chemometrics methods,such as classical least squares(CLS),partial least squares(PLS), principle component regression(PCR) and radial basis function-artificial neural networks(RBF-ANN),were used to quantitatively resolve the overlapping signals.It was found that PCR gave the best results with total relative prediction error(RPE_T) of 7.71%.The proposed method was applied to determine these three drugs in several commercial food samples with spiked method and yielded satisfactory recoveries.  相似文献   

13.
Yang Wang  Jinglian Cao  Fei Wang  Qin Xu  Chun Yang 《Talanta》2009,77(3):1203-1207
Sequential injection lab-on-valve (LOV) was first proposed for analyzing ultra-trace amounts of Pb using differential pulse anodic stripping voltammetry (DPASV) with a miniaturized electrochemical flow cell fabricated in the LOV unit. Deposition and stripping processes took place between the renewable mercury film carbon paste electrode and sample solution, the peak current was employed as the basis of quantification. The mercury film displayed a long-term stability and reproducibility for at least 50 cycles before next renewal, the properties of integrated miniature LOV unit not only enhanced the automation of the analysis procedure but also declined sample/reagent consumption. Potential factors that affect the present procedure were investigated in detail, i.e., deposition potential, deposition time, electrode renewable procedure and the volume of sample solution. The practical applicability of the present procedure was demonstrated by determination of Pb in environmental water samples.  相似文献   

14.
A new method based on hollow fiber-protected liquid-phase microextraction (LPME) was developed for the simultaneous determination of atrazine, desethyl atrazine and desisopropyl atrazine in environmental water samples. In LPME, analytes were extracted into 1-octanol immobilized in the micropores of a poly(vinylidene fluoride) porous hollow fiber membrane, and back extracted into the acceptor (4 M HCl) filled in the lumen of the hollow fiber. After LPME, the analytes trapped in the acceptor were analyzed with high-performance liquid chromatography after neutralization. The effect of extraction factors such as sample pH, acceptor pH, salinity, extraction time, stirring rate, and humic acid were studied. Under the optimized conditions, the limits of detection and relative standard deviations were respectively in the range of 0.5–1.0 μg L−1 and 3.9–4.7% (n = 5). The proposed method was applied to determine atrazine, desethyl atrazine and desisopropyl atrazine in wastewater and groundwater samples. The three analytes were below the limits of detection, but good relative spiked recoveries over 90.1 ± 5.9% at 5 μg L−1 spiked level were obtained.  相似文献   

15.
A new method for the determination of ochratoxin A and T-2 toxin in alcoholic beverages (wine and beer) by hollow fiber liquid microextraction was optimized. The extraction step was followed by ultra high-pressure liquid chromatography coupled to tandem mass spectrometry (UHPLC-MS/MS). The extraction procedure was based on the extraction of mycotoxins from the sample to the organic solvent (1-octanol) immobilized in the fiber, and afterwards, they were desorbed in a mixture of acetonitrile/water (80:20, v/v) at pH 7 prior to chromatographic determination. Different variables affecting the extraction process such as organic solvent, salt content, extraction time and desorption solution were studied. The developed method was validated in wine and beer, using white wine and alcoholic beer as representative matrices for both types of samples. Relative recoveries higher than 70% were obtained for the selected mycotoxins. Good linearity (R2 > 0.993) was obtained and quantification limits (0.02-0.09 μg L−1) below European regulatory levels were achieved. Repeatability, expressed as relative standard deviation, was always lower than 12%, whereas interday precision was lower than 21%. The proposed method was applied to the analysis of several types of wines and beers and ochratoxin A was detected in a rosé wine at 1.1 μg L−1.  相似文献   

16.
Jun Xiong  Man He 《Talanta》2010,82(3):969-2619
A method of hollow fiber (HF) liquid phase microextraction (LPME) combined with gas chromatography (GC)-flame ionization detection (FID) was developed for the simultaneous quantification of trace amphetamine (AP), methamphetamine (MA), methylenedioxyamphetamine (MDA), methylenedioxymethamphetamine (MDMA), caffeine and ketamine (KT) in drug abuser urine samples. The factors affecting on the extraction of six target analytes by HF-LPME were investigated and optimized, and the subsequent analytical performance evaluation and real sample analysis were performed by the extraction of six target analytes in sample solution containing 30% NaCl (pH 12.5) for 20 min with extraction temperature of 30 °C and stirring rate of 1000 rpm. Under such optimal conditions, the limits of detection (LODs, S/N = 3) for the six target analytes were ranged from 8 μg/L (AP, KT) to 82 μg/L (MDA), with the enrichment factors (EFs) of 5-227 folds, and the relative standard deviations (RSDs, n = 7) were in the range of 6.9-14.1%. The correlation coefficients of the calibration for the six target analytes over the dynamic linear range were higher than 0.9958. The application feasibility of HF-LPME-GC-FID in illegal drug monitoring was demonstrated by analyzing drug abuser urine samples, and the recoveries of target drugs for the spiked sample ranging from 75.2% to 119.3% indicated an excellent anti-interference capability of the developed method. The proposed method is simple, effective, sensitive and low-cost, and provides a much more accurate and sensitive detection platform over the conventional analytical techniques (such as immunological assay) for drug abuse analysis.  相似文献   

17.
A method was established for the determination of desipramine in biological samples using liquid–liquid–liquid microextraction followed by in‐syringe derivatization and gas chromatography–nitrogen phosphorus detection. The extraction method was based on the use of two immiscible organic solvents. n‐Dodecane was impregnated in the pores of the hollow fiber and methanol was placed inside the lumen of the fiber as the acceptor phase. Acetic anhydride was used as the reagent for the derivatization of the analyte inside the syringe barrel. Parameters that affect the extraction efficiency (composition of donor and acceptor phase, ionic strength, sample temperature, and extraction time) as well as derivatization efficiency (amount of acetic anhydride and reaction time and temperature) were investigated. The limit of detection was 0.02 μg/L with intra and interday RSDs of 2.6 and 7.7%, respectively. The linearity of the method was in the range of 0.2–20 μg/L (r2 = 0.9986). The method was successfully applied to determine desipramine in human plasma and urine.  相似文献   

18.
The voltammetric characteristics of Fe(III) oxinate at a mercury electrode, in the presence of 0.2 M tributylammonium perchlorate (tri-BAP) and 0.2 M tributylamine (tri-BA) as the supporting electrolyte have been studied in chloroform. With this supporting electrolyte a two electron quasi-reversible process for the reduction of Fe(III) oxinate was observed. Preceded by a solvent extraction of Fe(III) oxinate in chloroform, differential pulse polarography (DP) was used for the determination of iron. The calibration graph was linear over the concentration range 0.5–50 μM Fe(III) oxinate in chloroform and the detection limit was 1.5 μM. The proposed DP method has been used for the determination of ferric, ferrous and total iron in a mixture and successfully applied to the speciation of iron in rocks.  相似文献   

19.
Tap water samples (Assiut city, lie in the middle north of upper Egypt, approx. 370 km from Cairo, January-March, 2002) were taken from the eight sampling sites of different locations at Assiut city. The samples are analyzed to determine the total content of cadmium, copper, lead and zinc by differential pulse anodic stripping voltammetry (DPASV) while nickel and cobalt are determined by a new simple differential pulse adsorptive stripping voltammetry (DPAdSV), using dimethylglyoxime (DMG) as the complexing agent. This method uses sodium sulfite as the supporting electrolyte, which facilitates the removal of oxygen interference without the traditional necessity of purging with inert gas. The effect of various parameters was studied using DPASV (for Cd, Pb, Cu and Zn) and AdSV (for Ni and Co) methods. Subsequently, under the so found experimental conditions, the stability of calibration curves and the detection limits (μg/l) have been determined. The data achieved (for all metals utility) are comparable to those measured by the graphite furnace atomic absorption spectrophotometric (GF-AAS) method. The effects of the interferences between these metal ions have been investigated. Moreover, the effect of storage was discussed and the obtained results were compared favorably with standard official methods. Statistical analysis of the database exhibits applicability and the accuracy of the techniques. The results obtained from the two techniques (Voltammetry and GF-AAS) are in very good agreements in the most tap water samples.  相似文献   

20.
A simple and sensitive method based on the combination of solid‐phase microextraction (SPME) and high‐performance liquid chromatography with ultroviolet detection was developed for the simultaneous determination of clenbuterol, salbutamol and ractopamine in pig samples. Parameters of the SPME procedure affecting extraction efficiency, such as the type of fiber, extraction time, extraction temperature, ion strength, pH of sample and stirring rate, were optimized. The developed method was validated according to the International Conference on Harmonization guidelines. The calibration curves were linear over a range of 0.5–50 µg/L for clenbuterol and ractopamine, and 0.2–20 µg/L for salbutamol. The limits of detection were 0.1 µg/L for clenbuterol, 0.05 µg/L for salbutamol and 0.1μg/L for ractopamine, respectively. The averages of intra‐ and inter‐day accuracy ranged from 79.8 to 92.4%. The intra‐day and inter‐day precision were below 9.6% for the three analytes. This method exhibited the advantages of simplicity, rapidity and low solvent consumption, and was suitable for the monitoring of β2‐agonists residue in pig samples. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号