首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The influence of substrate orientation on the morphology of graphene growth on 6H-SiC(0 0 0 1) was investigated using low-energy electron and scanning tunneling microscopy (LEEM and STM). Large area monolayer graphene was successfully furnace-grown on these substrates. Larger terrace widths and smaller step heights were obtained on substrates with a smaller mis-orientation from on-axis (0.03°) than on those with a larger (0.25°). Two different types of a carbon atom networks, honeycomb and three-for-six arrangement, were atomically resolved in the graphene monolayer. These findings are of relevance for various potential applications based on graphene-SiC structures.  相似文献   

2.
We used spectroscopic photoemission and low-energy electron microscopy to measure two-dimensional (2D) emission patterns of secondary electrons (SEs) emitted from graphene layers formed on SiC(0 0 0 1). The 2D SE patterns measured at the SE energies of 0-50 eV show energy-dependent intensity distributions in the 6-fold symmetry. The SE patterns exhibit features ascribed to energy band structures of 2D free electrons, which would prove that electrons are partially confined in thin graphene layers even above the vacuum level.  相似文献   

3.
V. Palermo  A. Parisini 《Surface science》2006,600(5):1140-1146
SiC nanocrystals are grown at high temperature on Si(1 0 0) and Si(1 1 1) surfaces starting from a chemisorbed layer of methanol. The decomposition of this layer allows to have a well defined amount of carbon to feed SiC growth. Nanocrystals ranging from 10 nm to 50 nm with density from 100 μm−2 to 1500 μm−2 are obtained, and the total volume of produced SiC corresponds to carbon provided by the chemisorbed organic layer. Large differences in nanocrystal size and density, as well as in surface roughness, are observed depending on substrate orientation. The internal structure, crystallinity and epitaxy of nanocrystals grown on Si(1 0 0) are studied using cross-sectional transmission electron microscopy (XTEM), methanol adsorption and surface evolution using scanning tunnelling microscopy (STM). The joint application of XTEM and STM techniques allows a complete characterization of the geometry and chemical composition of these nanostructures.  相似文献   

4.
Epitaxial graphene layers thermally grown on Si-terminated 6H-SiC (0 0 0 1) have been probed using Auger electron spectroscopy, Raman microspectroscopy, and scanning tunneling microscopy (STM). The average multilayer graphene thickness is determined by attenuation of the Si (L23VV) and C (KVV) Auger electron signals. Systematic changes in the Raman spectra are observed as the film thickness increases from one to three layers. The most striking observation is a large increase in the intensity of the Raman 2D-band (overtone of the D-band and also known as the G′-band) for samples with a mean thickness of more than ∼1.5 graphene layers. Correlating this information with STM images, we show that the first graphene layer imaged by STM produces very little 2D intensity, but the second imaged layer shows a single-Lorentzian 2D peak near 2750 cm−1, similar to spectra acquired from single-layer micromechanically cleaved graphene (CG). The 4-10 cm−1 higher frequency shift of the G peak relative to CG can be associated with charge exchange with the underlying SiC substrate and the formation of finite size domains of graphene. The much greater (41-50 cm−1) blue shift observed for the 2D-band may be correlated with these domains and compressive strain.  相似文献   

5.
Co(0 0 0 1)hcp/Fe(1 1 0)bcc epitaxial magnetic bi-layer films were successfully prepared on SrTiO3(1 1 1) substrates. The crystallographic properties of Co/Fe epitaxial magnetic bi-layer films were investigated. Fe(1 1 0)bcc soft magnetic layer grew epitaxially on SrTiO3(1 1 1) substrate with two type variants, Nishiyama–Wasserman and Kurdjumov–Sachs relationships. An hcp-Co single-crystal layer is obtained on Ru(0 0 0 1)hcp interlayer, while hcp-Co layer formed on Au(1 1 1)fcc or Ag(1 1 1)fcc interlayer is strained and may involve fcc-Co phase. It has been shown possible to prepare Co/Fe epitaxial magnetic bi-layer films which can be usable for patterned media application.  相似文献   

6.
ZnO films have been grown by a sol-gel process on Si (1 1 1) substrates with and without SiC buffer layers. The influence of SiC buffer layer on the optical properties of ZnO films grown on Si (1 1 1) substrates was investigated. The intensity of the E2 (high) phonon peak in the micro-Raman spectrum of ZnO film with the SiC buffer layer is stronger than that of the sample without the SiC buffer layer, and the breadth of E2 (high) phonon peak of ZnO film with the SiC buffer layer is narrower than that of the sample without the SiC buffer layer. These results indicated that the crystalline quality of the sample with the SiC buffer layer is better than that of the sample without the SiC buffer layer. In photoluminescence spectra, the intensity of free exciton emission from ZnO films with the SiC buffer was much stronger than that from ZnO film without the SiC buffer layer, while the intensity of deep level emission from sample with the SiC buffer layer was about half of that of sample without the SiC buffer layer. The results indicate the SiC buffer layer improves optical qualities of ZnO films on Si (1 1 1) substrates.  相似文献   

7.
The oxidation of graphene layer on Ru(0 0 0 1) has been investigated by means of scanning tunneling microscopy. Graphene overlayer can be formed by decomposing ethyne on Ru(0 0 0 1) at a temperature of about 1000 K. The lattice mismatch between the graphene overlayer and the substrate causes a moiré pattern with a superstructure in a periodicity of about 30 Å. The oxidation of graphene/Ru(0 0 0 1) was performed by exposure the sample to O2 gas at 823 K. The results showed that, at the initial stage, the oxygen intercalation between the graphene and the Ru(0 0 0 1) substrate takes place at step edges, and extends on the lower steps. The oxygen intercalation decouples the graphene layer from the Ru(0 0 0 1) substrate. More oxygen intercalation yields wrinkled bumps on the graphene surface. The oxidation of graphene, or the removal of carbon atoms can be attributed to a process of the combination of the carbon atoms with atomic oxygen to form volatile reaction products. Finally, the Ru(0 0 0 1)-(2 × 1)O phase was observed after the graphene layer is fully removed by oxidation.  相似文献   

8.
Photoelectron spectroscopy, low-energy electron diffraction, and scanning probe microscopy were used to investigate the electronic and structural properties of graphite layers grown by solid state graphitization of SiC(0 0 0 1) surfaces. The process leads to well-ordered graphite layers which are rotated against the substrate lattice by 30°. On on-axis 6H-SiC(0 0 0 1) substrates we observe graphitic layers with up to several 100 nm wide terraces. ARUPS spectra of the graphite layers grown on on-axis 6H-SiC(0 0 0 1) surfaces are indicative of a well-developed band structure. For the graphite/n-type 6H-SiC(0 0 0 1) layer system we observe a Schottky barrier height of ?B,n = 0.3 ± 0.1 eV. ARUPS spectra of graphite layers grown on 8° off-axis oriented 4H-SiC(0 0 0 1) show unique replicas which are explained by a carpet-like growth mode combined with a step bunching of the substrate.  相似文献   

9.
The adsorption of naphthalene, vacuum deposited on a Ag(1 0 0) surface, was comprehensively investigated by means of low-energy electron diffraction (LEED), temperature-programmed thermal desorption (TPD) spectroscopy, X-ray photoelectron spectroscopy (XPS), and polarization-dependent near-edge X-ray absorption fine structure (NEXAFS) spectroscopy in the mono- and multilayer regime. A growth of long-range ordered monolayer at 140 K is observed with LEED. The polarization-dependent C 1s NEXAFS shows that the naphthalene molecules in the monolayer lie almost parallel to the Ag(1 0 0) surface. With increasing film thickness, the molecular orientation turns to upright position. Furthermore, NEXAFS measurements show that in the multilayer regime the molecular orientation depends on the substrate temperature during deposition.  相似文献   

10.
We report desorption cross section measurements for one monolayer of chemisorbed carbon on a Mo(1 0 0) surface induced by sputtering with noble gas ions (Ne+, Ar+, Xe+) at different incident angles, ion energies, and substrate temperatures. Desorption cross sections were determined by using low-energy ion scattering (LEIS) to monitor the increase of the signal from the Mo substrate. A monolayer of p(1 × 1) carbon adatoms on the Mo(1 0 0) surface was created by dosing ethylene (C2H4) to the substrate at 800 K, and characterized by Auger electron spectroscopy (AES) and low energy electron diffraction (LEED). We find that the carbon desorption cross section increases with increasing mass and energy of the impinging ions, and there is a maximum value for the desorption cross section at an incident angle for the ions of 30° from the surface plane. The desorption cross section also increases up to a substrate temperature of 300 °C. Values for the carbon desorption cross section for carbon adatoms on Mo(1 0 0) by 400-eV Xe+ ion sputtering are about 2 × 10−15 cm2, which is one order of magnitude higher than those for bulk carbon samples. This information is particularly important for evaluation of ion-engine lifetimes from ground-test measurements in which contaminant carbon is deposited on Mo accelerator grids, potentially altering the sputtering rate of the Mo. Our measurements show that monolayer amounts of carbon on Mo have desorption cross sections that are two orders of magnitude higher than estimates of what would be required to reduce the Mo erosion rate, and thus ground-test measurements can be used with confidence to predict ion-engine wear in space, from this perspective.  相似文献   

11.
The initial Ge growth stages on a (√3 × √3)R30°-reconstructed SiC(0 0 0 1) surface (√3) have been studied using a complete set of surface techniques such as reflection high energy electron diffraction (RHEED), low energy electron diffraction (LEED), atomic force microscopy (AFM) and photoemission and compared with similar Si surface enrichments in place of Ge. The investigations essentially focus on the wetting growth-regimes that are favoured by the use of the √3 surface as a starting substrate, this surface being the closest to a smooth and ideally truncated Si-terminated face of hexagonal SiC(0 0 0 1). Depending on temperature and Ge or Si coverages, varying surface organizations are obtained. They range from unorganized layer by layer growths to relaxed Ge(1 1 1) or Si(1 1 1) island growths, through intermediate attempts of coherent and strained Ge or Si surface layers, characterized by 4 × 4 and 3 × 3 surface reconstructions, respectively. RHEED intensity oscillation recordings, as a function of Ge or Si deposited amounts, have been particularly helpful to pinpoint the limited (by the high lattice mismatch) existence domains of these interesting coherent phases, either in terms of formation temperature or surface coverages. Prominently comparable data for these two Ge- and Si-related reconstructions allow us to propose an atomic model for the still unexplained Ge-4 × 4 one. It is based on a same local organization in trimer and ad-atom units for the Ge excess as admitted for the Si-excess of the 3 × 3 surface, the higher strain nevertheless favouring arrangements, for the Ge-units, in 4 × 4 arrays instead of 3 × 3 Si ones. Admitting such models, 1.25 and 1.44 monolayers of Ge and Si, should, respectively, be able to lie coherently on SiC, with respective lattice mismatches near 30% and 25%. The experimental RHEED-oscillations values are compatible with such theoretical ones. Moreover, these RHEED coverage determinations (for layer completion, for instance) inform us in turn about the initial Si richness of the starting √3 reconstruction and help us to discriminate between earlier contradictory atomic models proposed in the literature.  相似文献   

12.
We performed scanning tunneling microscopy (STM) and low-energy electron diffraction (LEED) experiments for Dy adsorbed on Mo(1 1 2) in the monolayer regime in order to clarify the concentration dependent reordering of the surface glass that exists for coverages above 0.58 of a monolayer (ML) after annealing to temperatures higher than 400 K. The partial reaction model developed earlier is corroborated. The Dy defect structure formed initially in Dy-Mo surface alloy acts as nucleation sites for Dy so that clusters with a wide distribution of lateral distances are formed, as found in particular at a coverage of 0.28 ML. The change in bonding character at coverages above 0.58 ML leads to reordering of the defects and the concentration dependent modulation of the adsorbed Dy layers. Examples at coverages of 0.7, 0.9 and 1.15 ML are shown and compared.  相似文献   

13.
Native oxide removal on GaAs(0 0 1) wafers under conventional thermal desorption causes severe surface degradation in the form of pitting. Typical surface regeneration requires several hundred nanometres of buffer layer growth. This level of planarization is necessary to fill in the deep pits since Ehrlich-Schwoebel diffusion barriers cause a retardation of layer growth at multiple monolayer step edges. Pits are, however, attractive nucleation sites for quantum dots (QDs), and hence QDs fill the pits via a self-governing phenomenon. In this paper, we show how 1.7 ML of InAs growth on GaAs(0 0 1) immediately after thermal oxide removal aids the healing of the surface and reduces the necessity for thick buffer layer growth.  相似文献   

14.
The desorption kinetics of hydrogen from polished 6H-SiC(0 0 0 1) surfaces exposed to various sources of hydrogen have been determined using temperature programmed desorption (TPD). For (3 × 3) 6H-SiC(0 0 0 1) surfaces prepared via annealing and cooling in SiH4, desorption of 0.2 ± 0.05 monolayer of molecular hydrogen was observed to occur at ≈590 °C. This β1 H2 desorption peak exhibited second order kinetics with an activation energy of 2.4 ± 0.2 eV. For (3 × 3) 6H-SiC surfaces exposed to atomic hydrogen generated via either a hot rhenium filament or remote hydrogen plasma, low energy electron diffraction patterns showed an eventual conversion back to (1 × 1) symmetry. Spectra acquired using Auger electron and X-ray photoelectron spectroscopies revealed that the atomic hydrogen exposure removed the excess Si. Photoelectron spectroscopy results also showed a 0.5 eV increase in binding energy for the Si2p and C1s core levels after removal of the Si-Si bilayer that is indicative of a decrease in band bending at the SiC surface. TPD from the (3 × 3) 6H-SiC(0 0 0 1) surfaces exposed to atomic hydrogen showed substantially more molecular hydrogen desorption (1-2 ML) through the appearance of a new desorption peak (β2,3) that started at ≈200 °C. The β2,3 peak exhibited second order desorption kinetics and a much lower activation energy of 0.6 ± 0.2 eV. A third smaller hydrogen desorption state was also detected in the 650-850 °C range. This last feature could be resolved into two separate desorption peaks (α1 and α2) both of which exhibited second order kinetics with activation energies of 4.15 ± 0.15 and 4.3 ± 0.15 eV, respectively. Based on comparisons to hydrogen desorption from Si and diamond surfaces, the β and α desorption peaks were assigned to hydrogen desorption from Si and C sites, respectively.  相似文献   

15.
A. Nojima 《Surface science》2007,601(14):3003-3011
We have used density functional theory to investigate hydrogen adsorption and diffusion on a W(1 1 0) surface. Hydrogen adsorption structures were examined from low coverage to one monolayer, and a threefold hollow site was found to be the most stable site at all coverages. In contrast to previous assertions, the work function decrease is not due to electron transfer from the hydrogen atoms to the W surface, but due to electron depletion at the vacuum region above the hydrogen atoms. Hydrogen atoms can diffuse via short-bridge sites and long-bridge sites at a coverage of θ = 1.0. Although the calculated activation energy for hydrogen diffusion via a short-bridge site is as small as 0.05 eV, field emission microscope experiments have shown that the activation energy for hydrogen diffusion is about 0.20 eV, which agrees fairly well with our calculated value of the activation energy via a long-bridge site. This discrepancy can be related to hydrogen delocalization on the W(1 1 0) surface, which has been suggested by electron energy loss spectroscopy experiments.  相似文献   

16.
J. Zachariae 《Surface science》2006,600(13):2785-2794
Exploring ways for self-organized structuring of insulating thin films, we investigated the possibility to produce replicas of step trains, given by a vicinal Si(0 0 1)-4°[1 1 0] surface, in layers of crystalline and perfectly lattice-matched Ba0.7Sr0.3O. For this purpose, we carried out high-resolution spot profile analyses in low-energy electron diffraction (SPA-LEED) both on flat Si(0 0 1) and on Si(0 0 1)-4°[1 1 0]. Oxide layers were generated by evaporating the metals in oxygen ambient pressure with the sample at room temperature. Our G(S) analysis of these mixed oxide layers reveals a strong influence of local compositional fluctuations of Sr and Ba ions and their respective scattering phases, which appears as an unphysically large variation of layer distances. Nevertheless, we are able to show that quite smooth and closed oxide films are obtained with an rms roughness of about 1 ML. These Ba0.7Sr0.3O films directly follow the step train of Sr-modified vicinal Si surfaces that form (1 1 3) oriented facets after adsorption of a monolayer of Sr. This proves that self-organized structuring of insulating films can indeed be an effective method.  相似文献   

17.
Growth and surface morphology of epitaxial Fe(1 1 0)/MgO(1 1 1)/Fe(1 1 0) trilayers constituting a magnetic tunnel junction were investigated by low-energy electron diffraction (LEED) and scanning tunneling microscopy (STM). STM reveals a grain-like growth mode of MgO on Fe(1 1 0) resulting in dense MgO(1 1 1) films at room temperature as well as at 250 °C. As observed by STM, initial deposition of MgO leads to a partial oxidation of the Fe(1 1 0) surface which is confirmed by Auger electron spectroscopy. The top Fe layer deposited on MgO(1 1 1) at room temperature is relatively rough consisting of clusters which can be transformed by annealing to an atomically flat epitaxial Fe(1 1 0) film.  相似文献   

18.
The surfaces of polycrystalline Cu, Au-coated Cu, Si(1 0 0) and of Si(1 0 0) coated with 1.5 monolayer Cu were investigated with positron annihilation induced Auger-electron spectroscopy (PAES). Since the electron background has been reduced considerably we observed the Cu M2,3VV-Auger transition on a copper surface within only three hours which is the shortest acquisition time reported so far for PAES. In order to demonstrate PAES’ high potential the Auger-yield, the signal-to-background ratio as well as the surface selectivity were compared with accompanying EAES-measurements quantitatively. A more efficient electron energy analyzer for the present PAES setup would lead to an additional efficiency gain of more than two orders of magnitude. The presented measurements were performed at the low-energy positron beam of high intensity NEPOMUC at the research reactor FRM II.  相似文献   

19.
Thermal stability of Ag layer on Ti coated Si substrate for different thicknesses of the Ag layer have been studied. To do this, after sputter-deposition of a 10 nm Ti buffer layer on the Si(1 0 0) substrate, an Ag layer with different thicknesses (150-5 nm) was sputtered on the buffer layer. Post annealing process of the samples was performed in an N2 ambient at a flow rate of 200 ml/min in a temperature range from 500 to 700 °C for 30 min. The electrical property of the heat-treated multilayer with the different thicknesses of Ag layer was examined by four-point-probe sheet resistance measurement at the room temperature. Phase formation and crystallographic orientation of the silver layers were studied by θ-2θ X-ray diffraction analysis. The surface topography and morphology of the heat-treated films were determined by atomic force microscopy, and also, scanning electron microscopy. Four-point- probe electrical measurement showed no considerable variation of sheet resistance by reducing the thickness of the annealed Ag films down to 25 nm. Surface roughness of the Ag films with (1 1 1) preferred crystallographic orientation was much smaller than the film thickness, which is a necessary condition for nanometric contact layers. Therefore, we have shown that the Ag layers with suitable nano-thicknesses sputtered on 10 nm Ti buffer layer were thermally stable up to 700 °C.  相似文献   

20.
With the aim of comparing initial Ge adsorption and desorption modes on different surface terminations of 4H-SiC(0 0 0 1) faces, 3 × 3, √3×√3R30° (R3) and 6√3×6√3R30° (6R3) reconstructions, of decreasing Si surface richness, have been prepared by standard surface preparation procedures. They are controlled by reflection high energy electron diffraction (RHEED), low energy electron diffraction and photoemission. One monolayer of Ge has been deposited similarly at room temperature on each of these three surfaces, followed by the same set of isochronal heatings at increasing temperatures up to complete Ge desorption. At each step of heating, the structural and chemical status of the Ge ad-layer has been probed. Marked differences between the Si- (3 × 3 and R3) and C-rich (6R3) terminations have been obtained. Ge wetting layers are only obtained up to 400 °C on 3 × 3 and R3 surfaces in the form of a 4 × 4 reconstruction. The wetting is more complete on the R3 surface, whose atomic structure is the closest to an ideally Si-terminated 1 × 1 SiC surface. At higher temperatures, the wetting layer stage transiets in Ge polycrystallites followed by the unexpected appearance on the 3 × 3 surface of a more ordered Si island structure. It denotes a Si clustering of the initial Si 3 × 3 excess, induced by the presence of Ge. A phase separation mechanism between Si and Ge prevails therefore over alloying by Ge supply onto a such Si-terminated 3 × 3 surface. Conversely, no wetting is obtained on the 6R3 surface and island formation of exclusively pure Ge takes place already at low temperature. These islands exhibit a better epitaxial relationship characterized by Ge(1 1 1)//SiC(0 0 0 1) and Ge〈1 1 −2〉//SiC〈1 −1 0 0〉, ascertained by a clear RHEED spot pattern. The absence of any Ge-C bond signature in the X-ray photoelectron spectroscopy Ge core lines indicates a dominant island nucleation on heterogeneous regions of the surface denuded by the 6R3 graphite pavings. Owing to the used annealing cycles, the deposited Ge amount desorbs on the three surfaces at differentiated temperatures ranging from 950 to 1200 °C. These differences probably reflect the varying morphologies formed at lower temperature on the different surfaces. Considering all these results, the use of imperfect 6R3 surfaces appears to be suited to promote the formation of pure and coherent Ge islands on SiC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号