首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Naphthalimide derivative (compound 1) containing hydrophilic hexanoic acid group was synthesized and used to recognize Hg2+ in aqueous solution. The fluorescence enhancement of 1 is attributed to the formation of a complex between 1 and Hg2+ by 1:1 complex ratio (K = 2.08 × 105), which has been utilized as the basis of fabrication of the Hg2+-sensitive fluorescent chemosensor. The comparison of this method with some other fluorescence methods for the determination of Hg2+ indicated that the method can be applied in aqueous solution rather than organic solution. The analytical performance characteristics of the proposed Hg2+-sensitive chemosensor were investigated. The chemosensor can be applied to the quantification of Hg2+ with a linear range covering from 2.57 × 10−7 to 9.27 × 10−5 M and a detection limit of 4.93 × 10−8 M. The experiment results show that the response behavior of 1 toward Hg2+ is pH independent in medium condition (pH 4.0–8.0). Most importantly, the fluorescence changes of the chemosensor are remarkably specific for Hg2+ in the presence of other metal ions, which meet the selective requirements for practical application. Moreover, the response of the chemosensor toward Hg2+ is fast (response time less than 1 min). In addition, the chemosensor has been used for determination of Hg2+ in hair samples with satisfactory results, which further demonstrates its value of practical applications.  相似文献   

2.
A new fluorescent chemosensor for Hg2+ based on a dansyl amide-armed calix[4]-aza-crown was reported. It exhibits high sensitivity and selectivity toward Hg2+ over a wide range of metal ions in MeCN-H2O (4:1, v/v). The association constant of the 1:1 complex formation for 2-Hg2+ was calculated to be 1.31 × 105 M−1, and the detection limit for Hg2+ was found to be 4.1 × 10−6 mol L−1.  相似文献   

3.
An analytical method using an optical probe in a photoelectrochemical cell for the sensitive and selective determination of aqueous Hg2+ is presented. A previously synthesized Hg2+ selective chemosensor, proven to be Hg2+ sensitive up to 2 μg L−1, has been immobilized onto indium tin oxide (ITO) electrodes in a composite form with polyaniline. The coated ITO electrode was placed in a photoelectrochemical cell under closed circuit conditions in which the optical recognition of the chemosensor was converted to a measurable signal. A composite of the fluorescent chemosensor, Rhodamine 6G derivative (RS), and polyaniline (PANI) was immobilized on ITO glass plates and subjected to photovoltage measurements in the absence and presence of Hg2+. The optical responses of the coated electrode were used to determine the sensitivity and selectivity of the immobilized sensor to Hg2+ in the presence of background ions. The optical response of the PANI-dye coated electrode increased linearly with increasing Hg2+ concentration in the range 10-150 μg L−1, with a detection limit of 6 μg L−1.  相似文献   

4.
A new indole-based fluorescent chemosensor 1 was prepared and its metal ion sensing properties were investigated. It exhibits high sensitivity and selectivity toward Hg2+ among a series of metal ions in H2O-EtOH (7:1, v/v). The association constant of the 1:1 complex formation for 1-Hg2+ was calculated to be 9.57 × 103 M−1, and the detection limit for Hg2+ was found to be 2.25 × 10−5 M. Computational results revealed that 1 and Hg2+ ion formed with a central tetrahedron-coordinated Hg2+.  相似文献   

5.
Yu Y  Lin LR  Yang KB  Zhong X  Huang RB  Zheng LS 《Talanta》2006,69(1):103-106
A novel and simple fluorophore, p-dimethylaminobenzaldehyde thiosemicarbazone (DMABTS), was prepared in order to find available fluorescent chemosensor for mercuric ion in aquesous solution. DMABTS emitted fluorescence at 448 nm in aqueous solution and its fluorescence intensity was completely quenched upon interaction with Hg2+ ions, which should be attributed to the 1:1 complex formation between DMABTS and Hg2+. The binding constant of the complex was determined as 7.48 × 106 mol l−1. The linear range of quantitative detection of 0 to 5.77 × 10−6 mol l−1 and the detection limit of 7.7 × 10−7 mol l−1 for Hg2+ in the 6.3 × 10−6 mol l−1 DMABTS aqueous solution were obtained from a calibration curve. The coexistence of several transition metal ions and anions did interfere the fluorometric titration of Hg2+ ion by less than 4% in the emission change.  相似文献   

6.
A novel azocalix[4]arene derivative, 5,11,17,23-tetrakis[(acetophenone)azo]-25,26,27,28-tetrahydroxycalix[4]arene (APC4), containing acetophenone azo groups at the upper rim was synthesized as a chemosensor. Its binding and sensing properties with alkali and alkaline earth metal ions (Li+, Na+, K+, Rb+, Cs+, Mg2+, Ca2+, Sr2+, Ba2+) were investigated by UV-vis spectrophotometric and voltammetric techniques. The stoichiometric ratio and the association constant were determined spectrophotometrically as 1:1 and (1.94±0.31)×105 L mol?1 for the complex between Mg2+ and the chemosensor, respectively. Moreover, it was shown that the interaction between Mg2+ and the APC4 occurred by means of the phenol groups at the lower rim by voltammetric methods. The results of spectrophotometric and voltammetric experiments showed that the chromogenic chemosensor has high selectivity towards Mg2+ among the other used metal ions, especially the interfering Ca2+ ion.   相似文献   

7.
In this study, a multiplex fluorescence sensor for successive detection of Fe3+, Cu2+ and Hg2+ ions based on “on–off” of fluorescence of a single type of gold nanoclusters (Au NCs) is described. Any of the Fe3+, Cu2+ and Hg2+ ions can cause quenching fluorescence of Au NCs, which established a sensitive sensor for detection of these ions respectively. With the introduction of ethylene diamine tetraacetic acid (EDTA) to the system of Au NCs and metal ions, a restoration of fluorescence may be found with the exception of Hg2+. A highly selective detection of Hg2+ ion is, thus, achieved by masking Fe3+ and Cu2+. On the other hand, the masking of Fe3+ and Cu2+ leads to the enhancement of fluorescence of Au NCs, which in turn provides an approach for successive determination of Fe3+ and Cu2+ based on “on–off” of fluorescence of Au NCs. Moreover, this assay was applied to the successful detection of Fe3+, Cu2+ and Hg2+ in fish, a good linear relationship was found between these metal ions and the degree of quenched fluorescent intensity. The dynamic ranges of Hg2+, Fe3+ and Cu2+ were 1.96 × 10−10–1.01 × 10−9, 1.28 × 10−7–1.27 × 10−6 and 1.2 × 10−7–1.2 × 10−6 M with high sensitivity (the limit of detection of Fe3+ 2.0 × 10−8 M, Cu2+ 1.9 × 10−8 M and Hg2+ 2 × 10−10 M). These results indicate that the assay is suitable for sensitive detection of these metal ions even under the coexistence, which can not only determine all three kinds of metal ions successively but also of detecting any or several kinds of metal ions.  相似文献   

8.
Fei Wang  Xiaohan Wei  Shusheng Zhang 《Talanta》2010,80(3):1198-1204
The π-A isotherms and UV-vis spectra of the transferred films suggested that the monolayer of p-tert-butylthiacalix[4]arene can coordinate with Hg2+ at the air-water surface. From these observations, a glassy carbon electrode coated with Langmuir-Blodgett film of p-tert-butylthiacalix[4] arene as a new voltammetric sensor is designed for the determination of trace amounts of Hg2+. Compared with bare glassy carbon electrode and modified glassy carbon electrode using direct coating method, the Langmuir-Blodgett film-modified electrode can greatly improve the measuring sensitivity of Hg2+. Under the selected conditions, the Langmuir-Blodgett film-modified electrode in 0.1 mol L−1 H2SO4 + 0.01 mol L−1 KCl solution shows a linear voltammetric response for Hg2+ in the range of 5.0 × 10−10 to 1.5 × 10−7 mol L−1, with a detection limit of 2.0 × 10−10 mol L−1. The proposed method was also applied to determine Hg2+ in water samples (tap, lake and river water). In addition, the fabricated electrode exhibited a distinct advantage of simple preparation, non-toxicity, good reproducibility and good stability.  相似文献   

9.
A new pyrene-containing fluorescent sensor has been synthesized from 2,3,3-trimethylindolenine. Spectroscopic and photophysical properties of sensor are presented. The large change in fluorescence intensity (I/I0 = 0.13) at 381 nm and affinity to Hg2+ over other cations such as K+, Na+, Ca2+, Mg2+, Pb2+, and Cu2+ make this compound a useful chemosensor for Hg2+ detection in hydrophilic media. The sensor (6.0 × 10−6 M) displays significant fluorescence quenching upon addition of Hg2+ in pH 7.4 HEPES buffer without excimer formation. Job’s plot analysis shows the binding stoichiometry to be 2:1 (host/guest).  相似文献   

10.
An efficient fluorescent chemosensor for Hg2+ ion, based on 5-(dimethylamino)-N-(2-mercaptophenyl)naphthalene-1-sulfonamide, has been developed. It exhibits Hg2+-selective on–off fluorescence quenching behavior via twisted intramolecular charge transfer (TICT) mechanism, which is rationalized by time dependent density functional theory (TD-DFT) calculations. The system exhibits visible color change from colorless to gray upon Hg2+ binding with very high selectivity and sensitivity (as low as 5.0 × 10−10 mol L−1) over other metal ions such as K+, Na+, Ag+, Mn2+, Ca2+, Ba2+, Fe2+, Zn2+, Pb2+, Cu2+, Sn2+, Cd2+, Ni2+ and Co2+. The present sensing system is also successfully applied for the detection of Hg2+ ion in real samples.  相似文献   

11.
A novel Hg2+-selective colorimetric sensor based on a cyclen–nitrobenzoxadiazole (NBD) conjugate was investigated. A cyclen derivative with three ester ligands was used as the binding site and the NBD moiety acted as the reporting chromogenic subunit. Interaction of 1 with Hg2+ ions resulted in a pronounced color change from pink to yellow, and fluorescence signaling was also possible. Selective colorimetric signaling of Hg2+ ions by NBD-functionalized cyclen with a detection limit of 1.5 × 10−6 M in aqueous environments was successfully achieved.  相似文献   

12.
A porphyrin derivative (1), containing two 2-(oxymethyl)pyridine units has been designed and synthesized as chemosensor for recognition of metal ions. Unlike many common porphyrin derivatives that show response to different heavy metal ions, compound 1 exhibits unexpected ratiometric fluorescence response to Zn2+ with high selectivity. The response of the novel chemosensor to zinc was based on the porphyrin metallation with cooperating effect of 2-(oxymethyl)pyridine units. The change of fluorescence of 1 was attributed to the formation of an inclusion complex between porphyrin ring and Zn2+ by 1:1 complex ratio (K = 1.04 × 105), which has been utilized as the basis of the fabrication of the Zn2+-sensitive fluorescent chemosensor. The analytical performance characteristics of the proposed Zn2+-sensitive chemosensor were investigated. The sensor can be applied to the quantification of Zn2+ with a linear range covering from 3.2 × 10−7 to 1.8 × 10−4 M and a detection limit of 5.5 × 10−8 M. The experiment results show that the response behavior of 1 to Zn2+ is pH-independent in medium condition (pH 4.0-8.0) and show excellent selectivity for Zn2+ over transition metal cations.  相似文献   

13.
A new surface based on poly(vinylferrocenium) (PVF+)-modified platinum electrode was developed for determination of Hg2+ ions in aqueous solutions. The polymer was electrodeposited on platinum electrode by constant potential electrolysis as PVF+ClO4. Cl ions were then attached to the polymer matrix by anion exchange and the modified electrode was dipped into Hg2+ solution. Hg2+ was preconcentrated at the polymer matrix by adsorption and also complexation reaction with Cl. Detection of Hg2+ was carried out by differential pulse anodic stripping voltammetry (DPASV) after reduction of Hg2+. Mercury ions as low as 5 × 10−10 M could be detected with the prepared electrode and the relative standard deviation was calculated as 6.35% at 1 × 10−6 M concentration (n = 6). Interferences of Ag+, Pb2+ and Fe3+ ions were also studied at two different concentration ratios with respect to Hg2+. The developed electrode was applied to the determination of Hg2+ in water samples.  相似文献   

14.
A fluorescent probe 1 for Hg2+ based on a rhodamine-coumarin conjugate was designed and synthesized. Probe 1 exhibits high sensitivity and selectivity for sensing Hg2+, and about a 24-fold increase in fluorescence emission intensity is observed upon binding excess Hg2+ in 50% water/ethanol buffered at pH 7.24. The fluorescence response to Hg2+ is attributed to the 1:1 complex formation between probe 1 and Hg2+, which has been utilized as the basis for the selective detection of Hg2+. Besides, probe 1 was also found to show a reversible dual chromo- and fluorogenic response toward Hg2+ likely due to the chelation-induced ring opening of rhodamine spirolactam. The analytical performance characteristics of the proposed Hg2+-sensitive probe were investigated. The linear response range covers a concentration range of Hg2+ from 8.0 × 10−8 to 1.0 × 10−5 mol L−1 and the detection limit is 4.0 × 10−8 mol L−1. The determination of Hg2+ in both tap and river water samples displays satisfactory results.  相似文献   

15.
Lu J  He X  Zeng X  Wan Q  Zhang Z 《Talanta》2003,59(3):553-560
A novel calix[4]arene derivative containing benzothiazole group was coated on glassy carbon electrode (GCE) and then applied to the recognition of mercury ion. Cyclic and square wave voltammetric results showed that the modified electrode selectively recognizes Hg2+ ion in aqueous media. A new anodic stripping peak at −0.3 V (vs. Ag/Ag+) can be obtained by scanning the potential from −0.6 to 0.6 V, and the peak currents are proportional to the Hg2+ concentration. The modified electrode in a 0.1 M H2SO4+0.01 M NaCl solution shows linear voltammetric response in the range of 25-300 μg l−1 and detection limit of 5 μg l−1 (ca. 2.5×10−8 M). This modified GCE does not present any significant interference from alkali, alkaline and transition metal ions except for Pb2+, Ag+ and Cu2+ ions. Only 500, 50 and 100-fold molar excess of Pb2+, Ag+ and Cu2+ ions, respectively, can lead to voltammetric response comparable with that of Hg2+. The proposed method was successfully applied to determine mercury in natural water.  相似文献   

16.
17.
Water-soluble luminescent CdSe quantum dots surface-modified with triethanolamine (TEA-CdSe-QDs) were prepared with high stability. The fluorescence of the TEA-CdSe-QDs was greatly quenched only when Hg2+ and I coexisted in the solution, whereas addition of either Hg2+ or I individually has no noticeable effect on the fluorescence emission. Such a unique quenching effect could be used for reciprocal recognition of mercury (II) ions and/or iodide anions in aqueous solution with rather high selectivity and sensitivity. The detection limits of Hg2+ or I ion were 1.9 × 10−7 mol L-1 or 2.8 × 10−7 mol L−1, respectively. The adequate experiments showed that iodine (I) anions could bridge between TEA-CdSe-QDs and Hg2+ to form a stable complex (QDs-I-Hg2+) and the following effective electron transfer from the QDs to the Hg2+ could be responsible for the fluorescence quenching of QDs.  相似文献   

18.
Duan J  Jiang X  Ni S  Yang M  Zhan J 《Talanta》2011,85(4):1738-1743
This paper described an investigation of a novel eco-friendly fluorescence sensor for Hg2+ ions based on N-acetyl-l-cysteine (NAC)-capped ZnS quantum dots (QDs) in aqueous solution. By using safe and low-cost materials, ZnS QDs modified by NAC were easily synthesized in aqueous medium via a one-step method. The quantitative detection of Hg2+ ions was developed based on fluorescence quenching of ZnS QDs with high sensitivity and selectivity. Under optimal conditions, its response was linearly proportional to the concentration of Hg2+ ions in a range from 0 to 2.4 × 10−6 mol L−1 with a detection limit of 5.0 × 10−9 mol L−1. Most of common physiologically relevant cations and anions did not interfere with the detection of Hg2+. The proposed method was applied to the trace determination of Hg2+ ions in water samples. The possible quenching mechanism was also examined by fluorescence and UV-vis absorption spectra.  相似文献   

19.
Zhen Fang 《Tetrahedron letters》2008,49(14):2311-2315
A cationic 5,15-(p-(9,9-bis(6-trimethylammoniumhexyl)fluorenylethynyl)phenyl)porphyrin tetrabromide was synthesized and the self-assembled films were used for Hg2+ detection in aqueous media. The detection response is based on fluorescence quenching of the porphyrin molecule upon coordination with Hg2+. The detection shows high selectivity for Hg2+ over Cu2+, Zn2+, Pb2+, Cd2+, Mn2+, Ni2+, Co2+ and Ca2+. A linear response toward Hg2+ in a concentration range of 1 × 10−10-1 × 10−6 M was observed for the film with a detection limit of 0.1 nM. The cationic porphyrin film shows higher stability and significant improvement in detection sensitivity, as compared to other porphyrin-based sensors. The amphiphilic cationic nature of the porphyrin synthesized also allows for the direct deposition of a porphyrin layer on a bare glass surface through self-assembly.  相似文献   

20.
A novel fluorescent chemosensor 1 with two anthraceneisoxazolymethyl groups at the lower rim of calix[4]arene has been synthesized, which revealed a dual emission (monomer and excimer) when excited at 375 nm. This chemosensor displayed a selective fluorescence quenching only with Cu2+ ion over all other metal ions examined. When Cu2+ ion was bound to 1, the fluorescence intensities of both monomer and excimer were quenched. Furthermore, the association constant for the 1:1 complex of 1·Cu2+ was determined to be (1.58 ± 0.03) × 104 M−1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号