首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Pei Liang  Ehong Zhao 《Mikrochimica acta》2011,174(1-2):153-158
We describe a method for displacement dispersive liquid-liquid microextraction (DLLME) along with graphite furnace atomic absorption spectrometry for the determination of Pd(II) in complex environmental samples. In this method, Cu(II) is first complexed with diethyldithiocarbamate (DDTC), and the resultant Cu-DDTC complex added to a sedimented phase and submitted to DLLME. In the second step, the sedimented phase is dispersed into the sample solution containing Pd, and another DLLME procedure is carried out. The Pd ions can displace Cu ions from the pre-extracted Cu-DDTC complex because the stability of the Pd-DDTC complex is higher than that of Cu-DDTC. As a result, Pd is preconcentrated. Potential interferences by transition metal ions of lower complex stability can be largely reduced as they cannot displace Cu from the Cu-DDTC complex. The tolerance limits for such ions are better by 2 to 4 orders of magnitude compared to conventional DLLME. The typical sample volume is 5?mL, and an enhancement factor of 96 and a detection limit (3?s) of 7.6?ng?L-1 are achieved.
Graphical Abstract
A displacement dispersive liquid-liquid microextraction is developed for the preconcentration of Pd(II) from complicated environmental samples. Potential interferences by transitional metal ions of lower complex stability can be largely reduced, and the tolerance limits for such ions were better by 2 to 4 orders of magnitude compared to conventional DLLME.  相似文献   

2.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

3.
This paper presents a novel approach to dispersive liquid-liquid microextraction (DLLME), based on the use of an auxiliary solvent for the adjustment of density. The procedure utilises a solvent system consisting of a dispersive solvent, an extraction solvent and an auxiliary solvent, which allows for the use of solvents having a density lower than that of water as an extraction solvent while preserving simple phase separation by centrifugation. The suggested approach could be an alternative to procedures described in the literature in recent months and which have been devoted to solving the same problem. The efficiency of the suggested approach is demonstrated through the determination of gold based on the formation of the ion pair [Au(CN)2] anion with Astra Phloxine (R) reagent and its extraction using the DLLME procedure with subsequent UV-VIS spectrophotometric and graphite furnace atomic absorption spectrometric detection. The optimum conditions were found to be: pH 3; 0.8 mmol L−1 K4[Fe(CN)6]; 0.12 mmol L−1 R; dispersive solvent, methanol; extraction solvent, toluene; auxiliary solvent, tetrachloromethane. The calibration plots were linear in the ranges 0.39-4.7 mg L−1 and 0.5-39.4 μg L−1 for UV-VIS and GFAAS detection, respectively; thus enables the application of the developed method in two ranges differing from one from another by three orders of magnitude. The presented approach can be applied to the development of DLLME procedures for the determination of other compounds extractable by organic solvents with a density lower than that of water.  相似文献   

4.
A novel, simple and environmentally friendly procedure for copper determination has been developed. The method is based on the formation of an ion associate of Cu(I) with 1,3,3-trimethyl-2-[5-(1,3,3-trimethyl-1,3-dihydroindol-2-ylidene)-penta-1,3-dienyl]-3H-indolium (DIDC) in the presence of chloride ions as ligand, followed by dispersive liquid-liquid microextraction (DLLME) of the formed ion associate into organic phase and UV-Vis spectrophotometric detection. The following experimental conditions were used: pH 3, 0.24 mol L− 1 chloride ions, 0.06 mmol L− 1 DIDC. The effect of the nature of the extraction solvent, auxiliary solvent and disperser solvent used was studied. A mixture of amyl acetate, tetrachloromethane, and methanol in a 1:1:3 v/v/v ratio was selected for the DLLME procedure. The absorbance of the coloured extracts at 640 nm wavelength obeys Beer's law in the range 0.020-0.090 mg L− 1 of Cu. The limit of detection calculated from a blank test (n = 10) based on 3s is 0.005 mg L− 1 of Cu. The developed procedure was applied to the analysis of water samples. The suggested DLLME is compared with two procedures previously reported from our laboratory based on (1) conventional liquid-liquid extraction, and (2) sequential injection extraction performed in a dual-valve sequential injection system. The advantages and disadvantages of each method are discussed.  相似文献   

5.
A rapid and effective preconcentration method for extraction of rhodamine 6G was developed by using a dispersive liquid-liquid microextraction (DLLME) prior to UV-vis spectrophotometry. In this extraction method, a suitable mixture of acetone (disperser solvent) and chloroform (extractant solvent) was injected rapidly into a conical test tube containing aqueous solution of rhodamine 6G. Therefore, a cloudy solution was formed. After centrifugation of the cloudy solution, sedimented phase was evaporated, reconstituted with methanol and measured by UV-vis spectrophotometry. Different operating variables such as type and volume of extractant solvent, type and volume of disperser solvent, pH of the sample solution, salt concentration and extraction time were investigated. The optimized conditions (extractant solvent: 300 μL of chloroform, disperser solvent: 3 mL of acetone, pH: 8 and without salt addition) resulted in a linear calibration graph in the range of 5-900 ng mL−1 of rhodamine 6G in initial solution with R2 = 0.9988 (n = 5). The Limits of detection and quantification were 2.39 and 7.97 ng mL−1, respectively. The relative standard deviation for 50 and 250 ng mL−1 of rhodamine 6G in water were 2.88% and 1.47% (n = 5), respectively. Finally, the DLLME method was applied for determination of rhodamine 6G in different industrial waste waters.  相似文献   

6.
Anthemidis AN  Ioannou KI 《Talanta》2011,84(5):1215-1220
A novel, simple and efficient sequential injection (SI) on-line dispersive liquid-liquid microextraction (DLLME) procedure was described and was demonstrated for the assay of trace silver determination by flame atomic absorption spectrometry (FAAS). Fatty alcohols, such as 1-undecanol and 1-dodecanol, were examined as extraction solvents at microlitre volume, overcoming a major problem of the DLLME methods, the high toxicity of the extraction solvents used. Furthermore, the extractant fine droplets can be easily separated from the aqueous phase using a micro-column packed with a novel hydrophobic sorbent material, poly(etheretherketone)-turnings. In this method fine droplets of 1-dodecanol were on-line generated and dispersed into the stream of aqueous sample. By this continuous process, silver diethyldithiocarbamate (Ag-DDTC) complex was formed and extracted into the dispersed extraction solvent. No specific conditions such as ice bath for low temperature or special tools are required for extractant isolation. All significant parameters that influence the efficiency of the system such as sample acidity, concentration of complexing reagent and extraction solvent, flow-rate of disperser and sample solution as well as the preconcentration time were investigated and optimized by full factorial design. Under the optimized conditions a detection limit of 0.15 μg L−1, a relative standard deviation (RSD) of 2.9% at 5.00 μg L−1 Ag(I) concentration level and an enhancement factor of 186 were obtained. The developed method was evaluated by analyzing certified reference material and was applied successfully to the analysis of environmental water samples.  相似文献   

7.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

8.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

9.
A method was developed for the determination of silver ion (Ag) by combining dispersive liquid-liquid microextraction preconcentration with graphite furnace atomic absorption spectrometry. Diethyldithiocarbamate was used as a chelating agent, and carbon tetrachloride and methanol as extraction and dispersive solvent. Factors influencing the extraction efficiency of Ag and its subsequent determination were studied and optimized. The detection limit is 12 ng L?1 (3 s) with an enrichment factor of 132, and the relative standard deviation is 3.5% (n?=?7, at 1.0 ng mL?1). The method was successfully applied to the determination of trace amounts of Ag in water samples.  相似文献   

10.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

11.
A novel on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system coupled to electrothermal atomic absorption spectrometry (ETAAS) was developed for metal preconcentration in micro-scale, eliminating the laborious and time consuming procedure of phase separation with centrifugation. The potentials of the system were demonstrated for trace lead and cadmium determination in water samples. An appropriate disperser solution which contains the extraction solvent (xylene) and the chelating agent (ammonium pyrrolidine dithiocarbamate) in methanol is mixed on-line with the sample solution (aqueous phase), resulting thus, a cloudy solution, which is consisted of fine droplets of xylene, dispersed throughout the aqueous phase. Three procedures are taking place simultaneously: cloudy solution creation, analyte complex formation and extraction from aqueous phase into the fine droplets of xylene. Subsequently the droplets were retained on the hydrophobic surface of PTFE-turnings into the column. A part of 30 μL of the eluent (methyl isobutyl ketone) was injected into furnace graphite for analyte atomization and quantification. The sampling frequency was 10 h−1, and the obtained enrichment factor was 80 for lead and 34 for cadmium. The detection limit was 10 ng L−1 and 2 ng L−1, while the precision expressed as relative standard deviation (RSD) was 3.8% (at 0.5 μg L−1) and 4.1% (at 0.03 μg L−1) for lead and cadmium respectively. The proposed method was evaluated by analyzing certified reference materials and was applied to the analysis of natural waters.  相似文献   

12.
A simple, sensitive and powerful on-line sequential injection (SI) dispersive liquid-liquid microextraction (DLLME) system was developed as an alternative approach for on-line metal preconcentration and separation, using extraction solvent at microlitre volume. The potentials of this novel schema, coupled to flame atomic absorption spectrometry (FAAS), were demonstrated for trace copper and lead determination in water samples. The stream of methanol (disperser solvent) containing 2.0% (v/v) xylene (extraction solvent) and 0.3% (m/v) ammonium diethyldithiophosphate (chelating agent) was merged on-line with the stream of sample (aqueous phase), resulting a cloudy mixture, which was consisted of fine droplets of the extraction solvent dispersed entirely into the aqueous phase. By this continuous process, metal chelating complexes were formed and extracted into the fine droplets of the extraction solvent. The hydrophobic droplets of organic phase were retained into a microcolumn packed with PTFE-turnings. A portion of 300 μL isobutylmethylketone was used for quantitative elution of the analytes, which transported directly to the nebulizer of FAAS. All the critical parameters of the system such as type of extraction solvent, flow-rate of disperser and sample, extraction time as well as the chemical parameters were studied. Under the optimum conditions the enhancement factor for copper and lead was 560 and 265, respectively. For copper, the detection limit and the precision (R.S.D.) were 0.04 μg L−1 and 2.1% at 2.0 μg L−1 Cu(II), respectively, while for lead were 0.54 μg L−1 and 1.9% at 30.0 μg L−1 Pb(II), respectively. The developed method was evaluated by analyzing certified reference material and applied successfully to the analysis of environmental water samples.  相似文献   

13.
A reversed-phase dispersive liquid-liquid microextraction (RP-DLLME) method was developed for the preconcentration and direct HPLC determination of oleuropein in olive's processing wastewater (OPW) and olive leaves extracts. In conventional DLLME, the sedimented phase is a micro-drop of a chlorinated organic solvent that is not compatible with RP-HPLC. Therefore, solvent evaporation and reconstitution with an appropriate solvent is often required. In RP-DLLME, this problem was overcome by overturning the solvent polarity in the ordinary DLLME and replacing the organic solvent with water. A central composite chemometrics design was used for multivariate optimization of the effects of five different parameters influencing the extraction efficiency of the method. In the optimized conditions, a mixture of 1.4 mL of an ethyl acetate extract of sample and 40 μL water (pH 5.0) was rapidly injected into 5.3 mL of cyclohexane. After centrifugation of the formed cloudy mixture, a micro-drop of the aqueous phase was sedimented at the conical bottom of the centrifuge tube. This phase, that contained the preconcentrated and partially purified analyte, was directly injected into an RP-HPLC column for analysis. A mean extraction recovery of 102.5 (±4.5) % with enrichment factors exceeding 38, was obtained for five replicated analysis. The detection limit of the method (3σ) for OE was 0.02 μg L−1 for OPW and 2 × 10−3 mg kg−1 for olive leaves samples. The results showed that, RP-DLLME is a promising technique which is quick, easily operated and can be directly coupled to HPLC.  相似文献   

14.
A rapid and simple method for the determination of two phthalates and five polycyclic musks in water samples using dispersive liquid-liquid microextraction (DLLME) mated to chemometrics and coupled to GC-MS was developed. Volume of extraction (CCl4) and disperser solvent (MeOH), pH, ionic strength, extraction time, centrifugation time as well as centrifugation speed were optimized in a 27-4 Plackett-Burman design. The obtained significant factors were optimized by using a central composite design (CCD) and the quadratic model between the dependent and the independent variables was built. The optimum experimental conditions of the proposed method were: 250 μL carbon tetrachloride, 0.62 mL methanol, 7.5 min centrifugation time, natural pH containing 0% (w/v) NaCl, while keeping centrifugation speed fixed at 4000 rpm.The calculated calibration curves gave high-level linearity for all target analytes with correlation coefficients ranging between 0.9970 and 0.9992. The repeatability and reproducibility of the proposed method, expressed as relative standard deviation, varied between 2.6% to 9.7% and 5.7% to 12.2%, respectively. The obtained LOD values were in the range of 8-63 ng L−1.  相似文献   

15.
A novel method, dispersive liquid-liquid microextraction (DLLME) coupled with high-performance liquid chromatography-variable wavelength detector (HPLC-VWD), has been developed for the determination of three phthalate esters (dimethyl phthalate (DMP), diethyl phthalate (DEP), and di-n-butyl phthalate (DnBP)) in water samples. A mixture of extraction solvent (41 μL carbon tetrachloride) and dispersive solvent (0.75 mL acetonitrile) were rapidly injected into 5.0 mL aqueous sample for the formation of cloudy solution, the analytes in the sample were extracted into the fine droplets of CCl4. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by HPLC-VWD. Some important parameters, such as the kind and volume of extraction solvent and dispersive solvent, extraction time and salt effect were investigated and optimized. Under the optimum extraction condition, the method yields a linear calibration curve in the concentration range from 5 to 5000 ng mL−1 for target analytes. The enrichment factors for DMP, DEP and DnBP were 45, 92 and 196, respectively, and the limits of detection were 1.8, 0.88 and 0.64 ng mL−1, respectively. The relative standard deviations (R.S.D.) for the extraction of 10 ng mL−1 of phthalate esters were in the range of 4.3-5.9% (n = 7). Lake water, tap water and bottled mineral water samples were successfully analyzed using the proposed method.  相似文献   

16.
A new dispersive liquid-liquid microextraction based on solidification of floating organic droplet method (DLLME-SFO) was developed for the determination of five kinds of polycyclic aromatic hydrocarbons (PAHs) in environmental water samples. In this method, no specific holder, such as the needle tip of microsyringe and the hollow fiber, is required for supporting the organic microdrop due to the using of organic solvent with low density and proper melting point. Furthermore, the extractant droplet can be collected easily by solidifying it in the lower temperature. 1-Dodecanol was chosen as extraction solvent in this work. A series of parameters that influence extraction were investigated systematically. Under optimal conditions, enrichment factors (EFs) for PAHs were in the range of 88-118. The limit of detections (LODs) for naphthalene, diphenyl, acenaphthene, anthracene and fluoranthene were 0.045, 0.86, 0.071, 1.1 and 0.66 ng mL−1, respectively. Good reproducibility and recovery of the method were also obtained. Compared with the traditional liquid-phase microextraction (LPME) and dispersive liquid-liquid microextraction (DLLME) methods, the proposed method obtained about 2 times higher enrichment factor than those in LPME. Moreover, the solidification of floating organic solvent facilitated the phase transfer. And most importantly, it avoided using high-density and toxic solvent in the traditional DLLME method. The proposed method was successfully applied to determinate PAHs in the environmental water samples. The simple and low-cost method provides an alternative method for the analysis of non-polar compounds in complex environmental water.  相似文献   

17.
A new sample preparation procedure, termed pH-controlled dispersive liquid–liquid microextraction (pH-DLLME), has been developed for the analysis of ionisable compounds in highly complex matrices. This DLLME mode, intended to improve the selectivity and to expand the application range of DLLME, is based on two successive DLLMEs conducted at opposite pH values. pH-DLLME was applied to determination of ochratoxin A (OTA) in cereals. The hydrophobic matrix interferences in the raw methanol extract (disperser, 1 mL) were removed by a first DLLME (I DLLME) performed at pH 8 to reduce the solubility of OTA in the extractant (CCl4, 400 μL). The pH of the aqueous phase was then adjusted to 2, and the analyte was extracted and concentrated by a second DLLME (extractant, 150 μL C2H4Br2). The main factors influencing the efficiency of pH-DLLME including type and volume of I DLLME extractant, as well as the parameters affecting the OTA extraction by II DLLME, were studied in detail. Under optimum conditions, the method has detection and quantification limits of 0.019 and 0.062 μg kg−1, respectively, with OTA recoveries in the range of 81.2–90.1% (n = 3). The accuracy of the analytical procedure, evaluated with a reference material (cereal naturally contaminated with OTA), is acceptable (accuracy of 85.6% ± 1.7, n = 5).  相似文献   

18.
A non-chromatographic separation and preconcentration method for Se species determination based on the use of an on-line ionic liquid (IL) dispersive microextraction system coupled to electrothermal atomic absorption spectrometry (ETAAS) is proposed. Retention and separation of the IL phase was achieved with a Florisil®-packed microcolumn after dispersive liquid-liquid microextraction (DLLME) with tetradecyl(trihexyl)phosphonium chloride IL (CYPHOS® IL 101). Selenite [Se(IV)] species was selectively separated by forming Se-ammonium pyrrolidine dithiocarbamate (Se-APDC) complex followed by extraction with CYPHOS® IL 101. The methodology was highly selective towards Se(IV), while selenate [Se(VI)] was reduced and then indirectly determined. Several factors influencing the efficiency of the preconcentration technique, such as APDC concentration, sample volume, extractant phase volume, type of eluent, elution flow rate, etc., have been investigated in detail. The limit of detection (LOD) was 15 ng L−1 and the relative standard deviation (RSD) for 10 replicates at 0.5 μg L−1 Se concentration was 5.1%, calculated with peak heights. The calibration graph was linear and a correlation coefficient of 0.9993 was achieved. The method was successfully employed for Se speciation studies in garlic extracts and water samples.  相似文献   

19.
Sereshti H  Khojeh V  Samadi S 《Talanta》2011,83(3):885-890
In this study, dispersive liquid-liquid microextraction (DLLME) combined with inductively coupled plasma optical emission spectrometry (ICP-OES) was developed for simultaneous preconcentration and trace determination of chromium, copper, nickel and zinc in water samples. Sodium diethyldithiocarbamate (Na-DDTC), carbon tetrachloride and methanol were used as chelating agent, extraction solvent and disperser solvent, respectively. The effective parameters of DLLME such as volume of extraction and disperser solvents, pH, concentration of salt and concentration of the chelating agent were studied by a (2f−1) fractional factorial design to identify the most important parameters and their interactions. The results showed that concentration of salt and volume of disperser solvent had no effect on the extraction efficiency. In the next step, central composite design was used to obtain optimum levels of effective parameters. The optimal conditions were: volume of extraction solvent, 113 μL; concentration of the chelating agent, 540 mg L−1; and pH, 6.70. The linear dynamic range for Cu, Ni and Zn was 1-1000 μg L−1 and for Cr was 1-750 μg L−1. The correlation coefficient (R2) was higher than 0.993. The limits of detection were 0.23-0.55 μg L−1. The relative standard deviations (RSDs, C = 200 μg L−1, n = 7) were in the range of 2.1-3.8%. The method was successfully applied to determination of Cr, Cu, Ni and Zn in the real water samples and satisfactory relative recoveries (90-99%) were achieved.  相似文献   

20.
Three preconcentration techniques including solid phase extraction (SPE), dispersive liquid-liquid microextraction (DLLME) and stir-bar sorptive extraction (SBSE) have been optimized and compared for the analysis of six hypolipidaemic statin drugs (atorvastatin, fluvastatin, lovastatin, pravastatin, rosuvastatin and simvastatin) in wastewater and river water samples by high performance liquid chromatography coupled to quadrupole-time-of-flight mass spectrometry (HPLC/Q-TOF-MS). Parameters that affect the efficiency of the different extraction methods such as solid phase material, sample pH and elution solvent in the case of SPE; the type and volume of the extracting and dispersive solvent, pH of sample, salt addition and number of extraction steps in the case of DLLME; and the stirring time, pH of sample, sample volume and salt addition for SBSE were evaluated. SPE allowed the best recoveries for most of the analytes. Pravastatin was poorly extracted by DLLME and could not be determined. SBSE was only applicable for lovastatin and simvastatin. However, despite the limitations of having poorer recovery than SPE, DLLME and SBSE offered some advantages because they are simple, require low organic solvent volumes and present low matrix effects. DLLME required less time of analysis, and for SBSE the stir-bar was re-usable. SPE, DLLME and SBSE provided method detection limits in the range of 0.04-11.2 ng L−1, 0.10-17.0 ng L−1 for 0.52-2.00 ng L−1, respectively, in real samples. To investigate and compare their applicability, SPE, DLLME and SBSE procedures were applied to the detection of statin drugs in effluent wastewater and river samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号