首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, 1-hexadecyl-3-methylimidazolium bromide (C16mimBr)-coated Fe3O4 magnetic nanoparticles (NPs) as an adsorbent of mixed hemimicelles solid-phase extraction was investigated for the preconcentration of two chlorophenols (CPs) in environmental water samples prior to HPLC with UV detection at 285 nm. The high surface area and excellent adsorption capacity of the Fe3O4 NPs after modification with C16mimBr were utilized adequately in the SPE process. By the rapid isolation of Fe3O4 NPs through placing a strong magnet on the bottom of beaker, the time-consuming preconcentration process of loading large volume sample in conventional SPE method with a column can be avoided. A comprehensive study of the adsorption conditions such as the zeta-potential of Fe3O4 NPs, added amounts of C16mimBr, pH value, standing time and maximal extraction volume were also presented. Under optimized conditions, two analytes of 2,4-dichlorophenol (2,4-DCP) and 2,4,6-trichlorophenol (2,4,6-TCP) were quantitatively determined. The method was then used to determine the two CPs in real environmental water samples. The accuracy of method was evaluated by recovery measurements on spiked samples. Good recovery results (74–90%) were achieved. It is important to note that satisfactory preconcentration factors and extraction recoveries for the two CPs were obtained with only a small amount of Fe3O4 NPs (40 mg) and C16mimBr (24 mg).  相似文献   

2.
In this study, a new type of alumina-coated magnetite nanoparticles (Fe3O4/Al2O3 NPs) modified by the surfactant sodium dodecyl sulfate (SDS) has been successfully synthesized and applied for extraction of trimethoprim (TMP) from environmental water samples based on mixed hemimicelles solid-phase extraction (MHSPE). The coating of alumina on Fe3O4 NPs not only avoids the dissolving of Fe3O4 NPs in acidic solution, but also extends their application without sacrificing their unique magnetization characteristics. Due to the high surface area of these new sorbents and the excellent adsorption capacity after surface modification by SDS, satisfactory concentration factor and extraction recoveries can be produced with only 0.1 g Fe3O4/Al2O3 NPs. Main factors affecting the adsolubilization of TMP such as the amount of SDS, pH value, standing time, desorption solvent and maximal extraction volume were optimized. Under the selected conditions, TMP could be quantitatively extracted. The recoveries of TMP by analyzing the four spiked water samples were between 67 and 86%, and the relative standard deviation (RSD) ranged from 2 to 6%. Detection and quantification limits of the proposed method were 0.09 and 0.24 μg L−1, respectively. Concentration factor of 1000 was achieved using this method to extract 500 mL of different environmental water samples. Compared with conventional SPE methods, the advantages of this new Fe3O4/Al2O3 NPs MHSPE method still include easy preparation and regeneration of sorbents, short times of sample pretreatment, high extraction yields, and high breakthrough volumes. It shows great analytical potential in preconcentration of organic compounds from large volume water samples.  相似文献   

3.
The hydrophobic octadecyl (C18) functionalized Fe3O4 magnetic nanoparticles (Fe3O4@C18) were caged into hydrophilic barium alginate (Ba2+-ALG) polymers to obtain a novel type of solid-phase extraction (SPE) sorbents, and the sorbents were applied to the pre-concentration of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) pollutants from environmental water samples. The hydrophilicity of the Ba2+-ALG cage enhances the dispersibility of sorbents in water samples, and the superparamagnetism of the Fe3O4 core facilitates magnetic separation. With the magnetic SPE technique based on the Fe3O4@C18@Ba2+-ALG sorbents, it requires only 30 min to extract trace levels of analytes from 500 mL water samples. After the eluate is condensed to 0.5 mL, concentration factors for both phenanthrene and di-n-propyl-phthalate are over 500, while for other analytes are about 1000. The recoveries of target compounds are independent of salinity and solution pH under testing conditions. Under optimized conditions, the detection limits for phenanthrene, pyrene, benzo[a]anthracene, and benzo[a]pyrene are 5, 5, 3, and 2 ng L−1, and for di-n-propyl-phthalate, di-n-butyl-phthalate, di-cyclohexyl-phthalate, and di-n-octyl-phthalate are 36, 59, 19, and 36 ng L−1, respectively. The spiked recoveries of several real water samples for PAHs and PAEs are in the range of 72-108% with relative standard deviations varying from 1% to 9%, showing good accuracy of the method. The advantages of the new SPE method include high extraction efficiency, short analysis time and convenient extraction procedure. To the best of our knowledge, it is unprecedented that hydrophilic Ba2+-ALG polymer caged Fe3O4@C18 magnetic nanomaterial is used to extract organic pollutants from large volumes of water samples.  相似文献   

4.
A novel method was developed for solid-phase extraction (SPE) of perfluorinated compounds (PFCs) from environmental water samples using cetyltrimethylammonium bromide (CTAB) coated Fe3O4 nanoparticles (Fe3O4 NPs) as an adsorbent. The magnetic nanosized adsorbent has a large surface area and superparamagnetic properties. This gives it a high extraction capacity and allows for convenient isolation by a magnetic field. Compared with other SPE methods and our previous work on PFCs, this method exhibited a fairly good analytical performance and required a small amount of sorbent (50 mg) and short pretreatment times (30 min) for 800 mL environmental water samples. Seven PFCs, including perfluorooctane sulfonic acid (PFOS), perfluorooctanoic acid (PFOA), perfluorononanoic acid (PFNA), perfluorodecanoic acid (PFDA), perfluoroundecanoic acid (PFUnDA), perfluorododecanoic acid (PFDoDA), and perfluorotetradecanoic acid (PFTA), extracted by the optimized method were determined by high-performance liquid chromatography-electrospray tandem mass spectrometry (HPLC/ESI-MS/MS). A concentration factor of 1600 was achieved when extracting 800 mL of several environmental water samples. Detection limits obtained for PFOA, PFOS, PFNA, PFDA, PFUnDA, PFDoDA and PFTA were 0.14, 0.022, 0.31, 0.23, 0.11, 0.16, 0.091 ng/L, respectively. The relative standard deviations of recoveries ranged from 1 to 8%, indicating good method precision.  相似文献   

5.
采用多步包覆法在自制的240nm的单分散SiO2微球表面进行β-FeOOH的包覆,在5wt%的NaOH溶液中去除核心SiO2后,得到β-FeOOH纳米结构空心微球。将单分散的β-FeOOH空心球作为内核,十六烷基三甲基溴化铵(CTAB)为模板剂,正硅酸乙酯(TEOS)为硅源,经水解缩聚反应得到空心核壳复合微球。在空气中焙烧(500℃,5h)对样品去除模板剂,并在还原气氛(5%H2/95%Ar,350℃,3h)下焙烧得到介孔SiO2/Fe3O4中空磁性复合微球。结果表明,所制得的介孔SiO2/Fe3O4中空磁性复合微球中的Fe3O4层厚度约60nm,是由Fe3O4纳米棒搭接而成的三维网络结构,复合微球的整体平均直径为390nm,比表面积较高约693m2·g-1,孔体积为0.63cm3·g-1,平均孔径为3.6nm,其饱和磁化强度可达13.6emu·g-1,同时较低的矫顽力(50Oe)有利于颗粒的再分散。  相似文献   

6.
以介孔SiO2/Fe3O4磁性中空微球作为载体,采用物理吸附法对漆酶进行固定化,考察了时间、温度和pH值对漆酶固定化效果的影响,并对固定漆酶的活性及稳定性进行了研究.结果表明,介孔SiO2/Fe3O4磁性中空微球吸附漆酶分子后,介孔材料的比表面积与孔体积均减小.在3 h时复合微球对漆酶的吸附达到平衡,复合微球中介孔SiO2对漆酶的有效固定量为689 mg/g,大大高于纯介孔材料MCM-41的漆酶固定量(319 mg/g).在pH=3~6的条件下,复合微球中固定漆酶仍保持70%以上的相对酶活.当温度不高于60℃时,固定漆酶的相对酶活仍保持65%以上.固定漆酶的pH稳定性和热稳定性都明显优于游离漆酶,固定漆酶的米氏常数为1.05 mmol/L,与游离漆酶相比,固定漆酶与底物的亲和力有所降低.当2,4-二氯苯酚的浓度为10 mg/L时,固定漆酶对其去除率在6 h时达到81.6%,表现出很好的催化活性.  相似文献   

7.
A novel approach to the study of microwave enhanced alkaline digestion was developed for rapid digestion of silicate samples. By using alkali metal hydroxide solution as microwave digestion solvent, the feasibility and principle of digestion were discussed for the determination of Fe2O3 contents in quartz, kaolin, feldspar and soda-lime-silica glass. The results obtained from four standard samples and six real world samples are in good agreement with the certified values, and are comparable to the predicted results from traditional alkaline digestion method. All the above demonstrates that this new proposed method is precise, accurate and can provide a simple, fast and energy saving procedure for the determination of components in silicate samples.  相似文献   

8.
A magnetic carbon nanomaterial for Fe3O4 enclosure hydroxylated multi-walled carbon nanotubes (Fe3O4-EC-MWCNTs-OH) was prepared by the aggregating effect of Fe3O4 nanoparticle on MWCNTs-OH, and combined with high-performance liquid chromatography (HPLC)/diode array detection (DAD) to determine the aconitines (aconitine, hypaconitine and mesaconitine) in human serum samples. Compared with other extraction modes investigated in experiment, Fe3O4-EC-MWCNTs-OH sorbents showed a good affinity to target analytes. Some important parameters that could influence extraction efficiency of aconitines, including the extraction mode, amounts of Fe3O4-EC-MWCNTs-OH, pH of sample solution, extraction time, desorption solvent and desorption time, were optimized. Under optimal conditions, the recoveries of spiked serum samples were between 98.0% and 103.0%; relative standard deviations (RSDs) ranged from 0.9% to 6.2%. The correlation coefficients varied from 0.9996 to 0.9998. The limits of detection ranged from 3.1 ng mL−1 to 4.1 ng mL−1 at a signal-to-noise ratio of 3. The experimental results showed that the proposed method was feasible for the analysis of aconitines in serum samples.  相似文献   

9.
In this study, a mixed hemimicelle solid‐phase extraction method based on Fe3O4 nanoparticles coated with sodium dodecyl sulfate was applied for the preconcentration and fast isolation of six fluoroquinolones in environmental water samples before high‐performance liquid chromatography determination. The main factors affecting the extraction efficiency of the analytes, such as amount of surfactant, amount of Fe3O4 nanoparticles, extraction time, sample volume, sample pH, ionic strength, and desorption conditions, were investigated and optimized. The method has detection limits from 0.05 to 0.1 ng/mL and good linearity (r ≥ 09948) in the range 0.1–200 ng/mL depending on the fluoroquinolone. The enrichment factor is ~200. The recoveries (at spiked levels of 1, 5, and 50 ng/mL) are in the range of 79–120%.  相似文献   

10.
Fe3O4/N-异丙烯酰胺(PNIPAM)纳米颗粒的合成   总被引:1,自引:0,他引:1  
A magnetic and thermosensitive poly(N-isopropylacrylamide)(PNIPAM) nanoparticles were prepared by the following procedure. The core-shell composite microparticles were synthesized by precipitating polymerization with Fe3O4 being entrapped with SiO2 as core and cross-linked PNIPAM as shell. Then, the SiO2 core was etched by hydrofluoric acid and magnetic thermosensitive Fe3O4/PNIPAM particles were formed. It has also been shown that the Fe3O4/PNIPAM nanoparticles are featured by lower critical solution temperature (LCST) at 33.0 ℃ while the temperature varies from 28.0 ℃ to 36.0 ℃. The composite magnetic thermosensitive particles were characterized by XRD, SEM, TEM and FTIR. The synthetic mechanism is also discussed.  相似文献   

11.
In the present work, a novel type of superparamagnetic nanosorbent, polythiophene-coated Fe3O4 nanoparticles (Fe3O4@PTh NPs), have been successfully synthesized. The synthesized NPs were characterized by scanning electron microscopy (SEM), Fourier transform-infrared (FT-IR) spectroscopy, and thermal gravimetric analysis (TGA). The synthesized Fe3O4@PTh NPs were applied as an efficient sorbent for extraction and preconcentration of several typical plasticizer compounds (di-n-butyl phthalate (DBP), di-(2-ethylhexyl) phthalate (DEHP), and dioctyl adipate (DOA)) from environmental water samples. Separation of Fe3O4@PTh NPs from the aqueous solution was simply achieved by applying external magnetic field. Separation and determination of the extracted plasticizers was performed by gas chromatography–flame ionization detection (GC–FID). Several variables affecting the extraction efficiency of the analytes i.e., amount of NPs sorbent, salt concentration, extraction time, and desorption conditions were investigated and optimized. The best working conditions were as follows: amount of sorbent, 100 mg; NaCl concentration, 30% (w/v); sample volume, 45 mL; extraction time, 10 min; and 100 μL of ethyl acetate for desorption of the analytes within 2 min. Under optimized conditions, preconcentration factors for DBP, DEHP, and DOA were obtained as 86, 194, and 213, respectively. The calibration curves were linear (R2 > 0.998) in the concentration range of 0.4–100 μg L−1 for both DEHP and DOA and 0.7–100 μg L−1 for DBP. The limits of detection (LODs) were obtained in the range of 0.2–0.4 μg L−1. The intra-day relative standard deviations (RSDs%) based on four replicates were obtained in the range of 4.0–12.3%. The proposed procedure was applied to analysis of water samples including river water, bottled mineral water, and boiling water exposed to polyethylene container (after cooling) and recoveries between 85 and 99% and RSDs lower than 12.8% were obtained.  相似文献   

12.
A synthetic method for the fabrication of silica-based mesoporous magnetic (Fe or iron oxide spinel) nanocomposites with enhanced adsorption and magnetic capabilities is presented. The successful in situ synthesis of magnetic nanoparticles is a consequence of the incorporation of a small amount of carbon into the pores of the silica, this step being essential for the generation of relatively large iron oxide magnetic nanocrystals (10 ± 3 nm) and for the formation of iron nanoparticles. These composites combine good magnetic properties (superparamagnetic behaviour in the case of SiO2–C–Fe3O4/γ–Fe2O3 samples) with a large and accessible porosity made up of wide mesopores (>9 nm). In the present work, we have demonstrated the usefulness of this kind of composite for the adsorption of a globular protein (hemoglobin). The results obtained show that a significant amount of hemoglobin can be immobilized within the pores of these materials (up to 180 mg g−1 for some of the samples). Moreover, we have proved that the composite loaded with hemoglobin can be easily manipulated by means of an external magnetic field.  相似文献   

13.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

14.
以共沉淀法制备出Fe3O4纳米粒子,通过聚乙烯亚胺(PEI)修饰Fe3O4纳米粒子,再原位复合上Au纳米粒子,制得Fe3O4/PEI/Au纳米颗粒微球。再将Fe3O4/PEI/Au纳米颗粒与巯基乙酸修饰的量子点CdSe/CdS连接,成功制备了Fe3O4/PEI/Au@CdSe/CdS多功能复合微球。经过傅里叶变换红外光谱仪(FTIR)、荧光分光光度计、荧光显微镜、X射线衍射(XRD)、透射电子显微镜(TEM)及振动样品磁强计(VSM)的表征。结果表明:多功能复合微球的粒径在40 nm左右,具有超顺磁性,剩磁,矫顽力近似等于零,饱和磁化强度为28.83 A·m2·kg-1,同时兼有优越的荧光性能和金纳米粒子的特性。  相似文献   

15.
Fe2O3/SiO2 nanocomposites based on fumed silica A-300 (SBET = 337 m2/g) with iron oxide deposits at different content were synthesized using Fe(III) acetylacetonate (Fe(acac)3) dissolved in isopropyl alcohol or carbon tetrachloride for impregnation of the nanosilica powder at different amounts of Fe(acac)3 then oxidized in air at 400–900 °C. Samples with Fe(acac)3 adsorbed onto nanosilica and samples with Fe2O3/SiO2 including 6–17 wt% of Fe2O3 were investigated using XRD, XPS, TG/DTA, TPD MS, FTIR, AFM, nitrogen adsorption, Mössbauer spectroscopy, and quantum chemistry methods. The structural characteristics and phase composition of Fe2O3 deposits depend on reaction conditions, solvent type, content of grafted iron oxide, and post-reaction treatments. The iron oxide deposits on A-300 (impregnated by the Fe(acac)3 solution in isopropanol) treated at 500–600 °C include several phases characterized by different nanoparticle size distributions; however, in the case of impregnation of A-300 by the Fe(acac)3 solution in carbon tetrachloride only α-Fe2O3 phase is formed in addition to amorphous Fe2O3. The Fe2O3/SiO2 materials remain loose (similar to the A-300 matrix) at the bulk density of 0.12–0.15 g/cm3 and SBET = 265–310 m2/g.  相似文献   

16.
Novel hollow Fe3O4 nanoparticles for drug delivery were synthesized via a one-step templatefree approach. These nanoparticles were obtained by modifing the Fe3O4 nanoparticles with 3-aminopropyltrimethoxy silane, and then grafting alginate onto the surface of amine magnetic. The hollow structure of Fe3O4 spheres was characterized by TEM, XRD, and XPS. The M-H hysteresis loop indicated that the magnetic spheres exhibit superparamagnetic characteristics at room temperature. Daunorubicin acting as a model drug was loaded into the carrier, and the maximum percent of envelop and load were 28.4% and 14.2% respectively. The drug controlled releasing behaviors of the carriers were compared in different pH media.  相似文献   

17.
The carbon coated Fe3O4 nanoparticles (Fe3O4/C) were synthesized by a simple hydrothermal reaction and applied as solid-phase extraction (SPE) sorbents to extract trace polycyclic aromatic hydrocarbons (PAHs) from environmental water samples. The Fe3O4/C sorbents possess high adsorption capacity and extraction efficiency due to strong adsorption ability of carbon materials and large surface area of nanoparticles, and only 50 mg of sorbents are required to extract PAHs from 1000 mL water samples. The adsorption attains equilibrium rapidly and analytes are eluted with acetonitrile readily. Salinity and solution pH have no obvious effect on the recoveries of PAHs, which avoids fussy adjustment to water sample before extraction. Under optimized conditions, the detection limits of PAHs are in the range of 0.2–0.6 ng L−1. The accuracy of the method was evaluated by the recoveries of spiked samples. Good recoveries (76–110%) with low relative standard deviations from 0.8% to 9.7% are achieved. This new SPE method provides several advantages, such as high extraction efficiency, high breakthrough volumes, convenient extraction procedure, and short analysis times. To our knowledge, this is the first time that Fe3O4/C nanoparticles are used for the pretreatment of environmental water samples.  相似文献   

18.
磁性Fe_3O_4@SiO_2@ZrO_2对水中磷酸盐的吸附研究   总被引:2,自引:0,他引:2  
合成了以Fe3O4为核,以SiO2为壳的磁性纳米微粒(Fe3O4@Si O2),并采用沉淀沉积法将ZrO2包覆到材料表面。通过XRD、TEM、VSM、ζ电位、XPS和N2吸附/脱附等手段对材料进行表征,结果表明材料Fe3O4@SiO2@ZrO2上沉积了氧化锆纳米颗粒,具有超顺磁性,可在外加磁场作用下实现从水中快速分离。同时系统研究了材料对水中磷酸盐的吸附行为,结果表明沉积Zr O2使得材料对磷酸盐表现出良好的吸附性能,并且随着沉积量的增大吸附量增加。吸附等温线符合Freundlich方程。吸附动力学可用拟二级动力学模型描述,吸附速率随磷酸盐初始浓度增加而减小。磷酸盐吸附量随溶液p H值的增大而减小,但几乎不受离子强度影响。  相似文献   

19.
Tessy Theres Baby 《Talanta》2010,80(5):2016-7814
A new type of amperometric glucose biosensor based on silicon dioxide coated magnetic nanoparticle decorated multiwalled carbon nanotubes (Fe3O4@SiO2/MWNTs) on a glassy carbon electrode (GCE) has been developed. MWNTs have been synthesized by catalytic chemical vapour decomposition (CCVD) of acetylene over rare earth (RE) based AB3 alloy hydride catalyst. The as-grown MWNTs have been purified and further functionlized. Functionalized MWNTs have been decorated with magnetic Fe3O4 nanoparticles which have been uniformly coated with biocompatible SiO2 using a simple chemical reduction method. The characterization of magnetic nanoparticle modified MWNTs have been done by X-ray diffraction (XRD), Fourier transform infra red spectroscopy (FT-IR), scanning electron microscope (SEM), transmission electron microscope (TEM), vibrating sample magnetometer (VSM), energy dispersive X-ray analysis (EDX) and UV-vis spectroscopy. Amperometric biosensor has been fabricated by the deposition of glucose oxidase (GOD) over Nafion-solubilized Fe3O4@SiO2/MWNTs electrode. The resultant bioelectrode retains its biocatalytic activity and offers fast and sensitive glucose quantification. The performance of the biosensor has been studied using cyclic voltammetry and amperometry and the results have been discussed. The fabricated glucose biosensor exhibits a linear response from 1 μM to 30 mM with an excellent detection limit of 800 nM indicating the potential applications in food industries.  相似文献   

20.
合成了以Fe3O4为核,以SiO2为壳的磁性纳米微粒(Fe3O4@SiO2),并采用沉淀沉积法将ZrO2包覆到材料表面。通过XRD、TEM、XPS和N2吸附/脱附等手段对材料进行表征,结果表明材料Fe3O4@SiO2@ZrO2上沉积了氧化锆纳米颗粒,具有超顺磁性,可在外加磁场作用下实现从水中快速分离。同时系统研究了材料对水中磷酸盐的吸附行为,结果表明沉积ZrO2使得材料对磷酸盐表现出良好的吸附性能,并且随着沉积量的增大吸附量增加。吸附等温线可用Freundlich方程拟合。吸附动力学可用拟二级动力学模型拟合,吸附速率随初始浓度增加而减缓。磷酸盐吸附量随溶液pH值的增大而减小,但几乎不受离子强度影响。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号