首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel and sensitive electrochemical method for determination of mercury (II) ions (Hg2+) based on the formation of thymine–Hg2+–thymine complexes and gold nanoparticle-mediated signal amplification is reported. Two 5′ end thiolated complementary oligonucleotides containing six strategically placed thymine–thymine mistakes were introduced in this work. One of the two oligonucleotides was immobilized on a gold electrode and the other one on gold nanoparticles (AuNPs). Due to six thymine–thymine mistakes the two oligonucleotides were not able to be hybridized, so AuNPs could not be immobilized onto the electrode surface after the electrode was immersed in the DNA–AuNPs solution. However, if Hg2+ existed, T–Hg2+–T complexes could be formed and AuNPs could be immobilized onto the electrode surface. Meanwhile, large numbers of [Ru(NH3)6]3+ molecules as electrochemical species could be localized onto the electrode surface. The Hg2+ detection limit of this assay could be as low as 10 nM, which is the US Environmental Protection Agency (EPA) limit of Hg2+ for drinkable water. This method is proven to be simple, convenient, high sensitive and selective.  相似文献   

2.
Li Y  Wu P  Xu H  Zhang Z  Zhong X 《Talanta》2011,84(2):508-512
For the widely used gold nanoparticles (AuNPs)-based colorimetric probes, AuNPs generally change from dispersion to aggregation state accompanying with corresponding color turning from red to blue. Although colorimetric probes based on the anti-aggregation of AuNPs show exceptional selectivity and sensitivity, few examples have been reported in literature. A facile but highly sensitive and selective colorimetric probe based on the anti-aggregation of AuNPs transferred from the deactivation of aggregation agent 4,4′-dipyridyl by Hg2+ was developed in this work. This reported probe is suitable for real-time detection of Hg2+ in water with a detection limit of 3.0 ppb for Hg2+, and exhibits a selectivity toward Hg2+ by two orders of magnitude over other metal ions. The dynamic range of this probe can be conveniently tuned by adjusting the amount of 4,4′-dipyridyl used.  相似文献   

3.
In this work we present an impedimetric detection system for DNA‐ligand interactions. The sensor system consists of thiol‐modified single‐stranded DNA chemisorbed to gold. Impedance measurements in the presence of the redox system ferri‐/ferrocyanide show an increase in charge transfer resistance (Rct) after hybridisation of a complementary target. Different amounts of capture strands, used for gold electrode modification, result in surface coverages between 3 and 15 pmol/cm2 ssDNA. The relative change in Rct upon hybridisation increases with increasing amount of capture probe on the electrode from 1.5‐ to 4.5‐fold. Impedimetric detection of binding events of a metal‐intercalator ([Ru(phen)3]2+) and a groove binder (spermine) to double‐stranded DNA is demonstrated. Binding of [Ru(phen)3]2+ and spermine exhibits a decrease in charge transfer resistance. Here, the ligand’s interaction leads to electrostatic shielding of the negatively charged DNA backbone. The impedance changes have been evaluated in dependence on the concentration of both DNA binders. Furthermore, the association of a single‐stranded binding protein (SSBP) is found to cause an increase in charge transfer resistance only when incubated with single‐stranded DNA. The specific binding of an anti‐dsDNA antibody to the dsDNA‐modified electrode surface decreases in contrast the interfacial impedance.  相似文献   

4.
The addition of Bismuthiol II to the gold nanoparticles (AuNPs) solution led to the aggregation of AuNPs with a color change from red to blue. As a result, hot spots were formed and strong surface-enhanced Raman scattering (SERS) signal of Bismuthiol II was observed. However, the Bismuthiol II-induced aggregation of AuNPs could be reversed by Hg2+ in the system, accompanied by a remarkable color change from blue to red. As evidenced by UV–vis and SERS spectroscopy, the variation in absorption band and SERS intensity was strongly dependent on the concentration of Hg2+, suggesting a colorimetric and SERS dual-signal sensor for Hg2+. The sensor had a high sensitivity, low detection limits of 2 nM and 30 nM could be achieved by UV–vis spectroscopy and by SERS spectroscopy, respectively. Other environmentally relevant metal ions did not interfere with the detection of Hg2+. The method was successfully applied to detect Hg2+ in water samples. It was simple, rapid and cost-effective without any modifying or labeling procedure.  相似文献   

5.
We have developed a simple method for the highly selective colorimetric detection of dissolved mercury(II) ions via direct formation of gold nanoparticles (AuNPs). The dithia-diaza ligand 2-[3-(2-amino-ethylsulfanyl)-propylsulfanyl]-ethylamine (AEPE) was used as a stabilizer to protect AuNPs from aggregation and to impart highly selective recognition of Hg(II) ion over other metal ions. A solution of Au(III) ion is directly reduced by sodium borohydride in the presence of AEPE and the detergent Triton X-100. This results in the formation of AEPE-AuNPs and a red coloration of the solution. On the other hand, in the presence of Hg(II), the solution turns blue within a few seconds after the addition of borohydride. This can be detected spectrophotometrically or even visually. The method was successfully applied to quantify Hg(II) levels in water sample, with a minimum detectable concentration as low as 35?nM.
Figure
A rapid colorimetric method for Hg2+ detection based on the reduction of Au3+ to gold nanoparticles in the presence of dithia-diaza (2S-2N) ligand was developed. The colors of the solutions without and with Hg2+ were red and blue, respectively.  相似文献   

6.
In this paper, a simple, selective and reusable electrochemical biosensor for the sensitive detection of mercury ions (Hg2+) has been developed based on thymine (T)-rich stem–loop (hairpin) DNA probe and a dual-signaling electrochemical ratiometric strategy. The assay strategy includes both “signal-on” and “signal-off” elements. The thiolated methylene blue (MB)-modified T-rich hairpin DNA capture probe (MB-P) firstly self-assembled on the gold electrode surface via Au–S bond. In the presence of Hg2+, the ferrocene (Fc)-labeled T-rich DNA probe (Fc-P) hybridized with MB-P via the Hg2+-mediated coordination of T–Hg2+–T base pairs. As a result, the hairpin MB-P was opened, the MB tags were away from the gold electrode surface and the Fc tags closed to the gold electrode surface. These conformation changes led to the decrease of the oxidation peak current of MB (IMB), accompanied with the increase of that of Fc (IFc). The logarithmic value of IFc/IMB is linear with the logarithm of Hg2+ concentration in the range from 0.5 nM to 5000 nM, and the detection limit of 0.08 nM is much lower than 10 nM (the US Environmental Protection Agency (EPA) limit of Hg2+ in drinking water). What is more, the developed DNA-based electrochemical biosensor could be regenerated by adding cysteine and Mg2+. This strategy provides a simple and rapid approach for the detection of Hg2+, and has promising application in the detection of Hg2+ in real environmental samples.  相似文献   

7.
In this paper, an electrochemical aptamer sensor was proposed for the highly sensitive detection of mercury ion (Hg2+). Carbon nanofiber (CNF) was prepared by electrospinning and high‐temperature carbonization, which was used for the loading of platinum nanoparticles (PtNPs) by the hydrothermal method. The Pt@CNF nanocomposite was modified on the surface of carbon ionic liquid electrode (CILE) to obtain Pt@CNF/CILE, which was further decorated by gold nanoparticles (AuNPs) through electrodeposition to get Au/Pt@CNF/CILE. Self‐assembling of the thiol‐based aptamer was further realized by the formation of Au‐S bond to get an electrochemical aptamer sensor (Aptamer/Au/Pt@CNF/CILE). Due to the specific binding of aptamer probe to Hg2+ with the formation of T‐Hg2+‐T structure, a highly sensitive quantitative detection of Hg2+ could be achieved by recording the changes of current signal after reacting with Hg2+ within the concentration range from 1.0 × 10?15 mol/L to 1.0 × 10?6 mol/L and the detection limit of 3.33 × 10?16 mol/L (3σ). Real water samples were successfully analyzed by this method.  相似文献   

8.
Chen HQ  Fu J  Wang L  Ling B  Qian BB  Chen JG  Zhou CL 《Talanta》2010,83(1):139-144
With the biomolecule glutathione (GSH) as a capping ligand, Eu3+-doped cadmium sulfide composite nanoparticles were successfully synthesized through a straightforward one-pot process. An efficient fluorescence energy transfer system with CdS nanoparticles as energy donor and Eu3+ ions as energy accepter was developed. As a result of specific interaction, the fluorescence intensity of Eu3+-doped CdS nanoparticles is obviously reduced in the presence of Hg2+. Moreover, the long fluorescent lifetime and large Stoke's shift of europium complex permit sensitive fluorescence detection. Under the optimal conditions, the fluorescence intensity of Eu3+ at 614 nm decreased linearly with the concentration of Hg2+ ranging from 10 nmol L−1 to 1500 nmol L−1, the limit of detection for Hg2+ was 0.25 nmol L−1. In addition to high stability and reproducibility, the composite nanoparticles show a unique selectivity towards Hg2+ ion with respect to common coexisting cations. Moreover, the developed method was applied to the detection of trace Hg2+ in aqueous solutions. The probable mechanism of reaction between Eu3+-doped CdS composite nanoparticles and Hg2+ was also discussed.  相似文献   

9.
A simple visual method for DNA detection during the formation of gold nanoparticles (AuNPs) was developed based on different electrostatic properties of single strand DNA (ssDNA) and double strand DNA (dsDNA). It could identify target DNA in 10 min.  相似文献   

10.
《中国化学快报》2019,30(12):2359-2362
A simple visual method for DNA detection during the formation of gold nanoparticles (AuNPs) was developed based on different electrostatic properties of single strand DNA (ssDNA) and double strand DNA (dsDNA). Since the ssDNA is easy to bind to AuNPs due to its exposed bases which could prevent salt-induced aggregation of AuNPs. The dsDNA always present negative charge because its negatively charged phosphate backbone is exposed. In this case, the dsDNA could disturb the adsorption between dsDNA and AuNPs and result in non-aggregation of AuNPs. After hybridization, chloroauric acid and ascorbic acid were added to the mixture solution, and the solution changed to red immediately and turned to purple in 10 min in the present of target DNA. TEM results confirmed that the change of color stemed from aggregation of AuNPs. In order to obtain accurate results by naked eye, the DNA detection assay should be conducted under pH 7.0.  相似文献   

11.
We report a simple and sensitive aptamer-based colorimetric detection of mercury ions (Hg2+) using unmodified gold nanoparticles as colorimetric probe. It is based on the fact that bare gold nanoparticles interact differently with short single-strand DNA and double-stranded DNA. The anti-Hg2+ aptamer is rich in thymine (T) and readily forms T–Hg2+–T configuration in the presence of Hg2+. By measuring color change or adsorption ratio, the bare gold nanoparticles can effectively differentiate the Hg2+-induced conformational change of the aptamer in the presence of a given salt with high concentration. The assay shows a linear response toward Hg2+ concentration through a five-decade range of 1 × 10−4 mol L−1 to 1 × 10−9 mol L−1. Even with the naked eye, we could identify micromolar Hg2+ concentrations within minutes. By using the spectrometric method, the detection limit was improved to the nanomolar range (0.6 nM). The assay shows excellent selectivity for Hg2+ over other metal cations including K+, Ba2+, Ni2+, Pb2+, Cu2+, Cd2+, Mg2+, Ca2+, Zn2+, Al3+, and Fe3+. The major advantages of this Hg2+ assay are its water-solubility, simplicity, low cost, visual colorimetry, and high sensitivity. This method provides a potentially useful tool for the Hg2+ detection.  相似文献   

12.
Engineered nucleic acid probes containing recognition and signaling functions find growing interest in biosensor design. In this paper, we developed a novel electrochemical biosensor for sensitive and selective detecting of Hg2+ based on a bifunctional oligonucleotide signal probe combining a mercury-specific sequence and a G-quadruplex (G4) sequence. For constructing the electrochemical Hg2+ biosensor, a thiolated, mercury-specific oligonucleotide capture probe was first immobilized on gold electrode surface. In the presence of Hg2+, a bifunctional oligonucleotide signal probe was hybridized with the immobilized capture probe through thymine–mercury(II)–thymine interaction-mediated surface hybridization. The further interaction between G4 sequence of the signal probe and hemin generated a G4–hemin complex, which catalyzed the electrochemical reduction of hydrogen peroxide, producing amplified readout signals for Hg2+ interaction events. This electrochemical Hg2+ biosensor was highly sensitive and selective to Hg2+ in the concentration of 1.0 nM to 1 μM with a detection limit of 0.5 nM. The new design of bifunctional oligonucleotide signal probes also provides a potential alternative for developing simple and effective electrochemical biosensors capable of detecting other metal ions specific to natural or artificial bases.  相似文献   

13.
镊子型dsDNA稳定的纳米金光度法快速检测Hg2+的研究   总被引:1,自引:0,他引:1  
利用Hg2+对胸腺嘧啶(T)T -T错配的特异性结合,建立了一种利用盐诱导金纳米粒子聚集的比色定量检测Hg2+离子的方法.设计了一种镊子型dsDNA,其一半为互补碱基形成的双螺旋结构,另一半为T-T错配.错配部分保持单链状态吸附在纳米金表面,使纳米金的稳定性增强,抑制盐诱导的纳米金团聚.当存在Hg2时,“T- Hg2+...  相似文献   

14.
A new and sensitive electrochemical DNA hybridization detection assay, using tris(2,2′-bipyridyl)cobalt(III) [Co(bpy)33+]-doped silica nanoparticles as the oligonucleotide (ODN) labeling tag, and based on voltammetric detection of Co(bpy)33+ inside silica nanoparticles, is described. Electro-active Co(bpy)33+ is not possible for directly linking with DNA, it is doped into the silica nanoparticles in the process of nanoparticles synthesis for DNA labeling with trimethoxysilylpropydiethylenetriamine (DETA) and glutaraldehyde as linking agents. The Co(bpy)33+ labeled DNA probe is used to hybridize with target DNA immobilized on the surface of glassy carbon electrode. Only the complementary sequence DNA (cDNA) could form a double-stranded DNA (dsDNA) with the DNA probe labeled with Co(bpy)33+ and give an obvious electrochemical response. A three-base mismatch sequence and non-complementary sequence had negligible response. Due to the large number of Co(bpy)33+ molecules inside silica nanoparticles linked to oligonucleotide DNA probe, the assay showed a high sensitivity. It allows the detection at levels as low as 2.0×10−10 mol l−1 of the target oligonucleotides.  相似文献   

15.
A study is presented on the binding kinetics and mechanism of the adsorption of dsDNA on citrate-capped gold nanoparticles (AuNPs). Methods include fluorescence titration, isothermal calorimetry (ITC) titration, dynamic light scattering and gel electrophoresis. It is found that the fluorescence of probe DNA (labeled with Rhodamine Green and measured at excitation/emission peaks of 498/531 nm) is quenched by addition of AuNPs. The Stern-Volmer quenching constant (Ksv) is 1.67?×?10^9 L·mol?1 at 308 K and drops with increasing temperature. The quenching mechanism is mainly static. The results of both fluorescence titrations and ITC show negative values for ΔH and ΔS values. This shows ion-induced dipole-dipole interaction to be the main attractive forces between dsDNA and AuNPs, while electrostatic interactions result in repulsion. The repulsive forces lead to a lower affinity between dsDNA and AuNPs (compared to single-strand DNA). It is also found that dsDNA can prevent the aggregation of AuNPs which is accompanied by a color change from red into blue. The visual detection limit with bare eyes for dsDNA1 is 36 pM. Based on these findings, a colorimetric method was developed to detect the proto-oncogene of serine/threonine-protein kinase B-Raf V600E point mutation in HT29, Ec109, A549, Huh-7 and SW480 cell lines.
Graphical abstract Schematic of the salt-induced aggregation of uncapped gold nanoparticles (AuNPs) which leads to a color change from red to blue. If the AuNPs are coated with dsDNA, aggregation is suppressed.
  相似文献   

16.
A novel electrochemical biosensor with high sensitivity and selectivity for mercuric ion detection, based on DNA self-assembly electrode, is designed. Thiol functionalized poly-T oligonucleotides were used as gold electrode modifier through formation of Au–S bond between DNA and gold electrode. In presence of Hg2+ ions, the specific coordination between Hg2+ and thymine bases can change parallel ss-DNA from linear to hairpin structures, which can cause the release of partial DNA molecules from the surface of the electrode. The density of DNA on the surface of electrode correlated with the concentration of mercury in the solution and can be monitored by electrochemical impedance spectroscopy. The limit of detection of this method is pM level of mercuric ions which is far below the upper limit of Hg2+ mandated by United States Environmental Protection Agency (EPA), 2 ppb (10 nM). In addition, this method showed excellent selectivity. A series of divalent metal ions, including Ni2+, Co2+, Mg2+, Zn2+, Ba2+ and Cd2+, have little interference with the detection of Hg2+.  相似文献   

17.
《Analytical letters》2012,45(14):2327-2343
Abstract

A novel approach for the voltammetric determination of Pb2+, Cu2+, and Hg2+ in the presence of macromolecule contaminants was developed. An Au nanoparticles array was directly electrodeposited onto the gold electrode surface followed by a further modification of a mercaptoethanesulfonate (MES) monolayer. Square wave stripping voltammetry (SWSV) of Pb2+, Cu2+, and Hg2+ was performed on the doubly modified electrode. The electrodeposited gold nanoparticles provided a significantly improved sensitivity. Simultaneously, the MES monolayer efficiently prevented the macromolecules accessing the electrode surface. Compared with the bare gold electrode, the doubly modified electrode has the ability to detect metal ions in the presence of macromolecule contaminants, even when their concentration reach 100 ppm. Under the optimal conditions, the detection limits of 0.16, 0.15, and 0.14 ppb for Pb2+, Cu2+, and Hg2+ were obtained, respectively. The calibration graphs were linear in the concentration range of 1–100 ppb. The results of the analysis of a real metallurgy wastewater sample were reported. The electrode system has a great potential for the direct determination of trace metals in the complex environment and biological samples.  相似文献   

18.
In this work, we investigated the fabrication of surface plasmon resonance (SPR) nanosensor using gold nanoparticles (AuNPs) chemisorbed onto self assembled monolayer of 10-(3-amino phenoxy) decane-1-thiol on gold substrate. The fabrication process of SPR nanosensor was characterized using different techniques such as infrared reflection-absorption spectra (IRRAS), xX-ray photoelectron spectroscopy (XPS), and atomic force microscope (AFM). The fabricated SPR nanosensor was used for detection of Cu2+ in an aqueous solution using surface plasmon resonance refractometer. The results confirm the fabrication of new SPR nanosensor. The fabricated SPR nanosensor showed a good activity toward the detection of Cu2+. The detection of Cu2+ in an aqueous solution using the fabricated SPR nansensor was enhanced in the presence of gold nanoparticles.  相似文献   

19.
基于金纳米颗粒(AuNPs)比表面积大、 尺寸小和能够承载大量DNA片段的特点, 建立了一种免标记、 简便、 快速检测DNA聚合酶Klenow fragment exo-(KF-)的电化学方法. 首先将巯基化的DNA引物片段修饰在金电极上, 然后加入模板DNA链以及修饰有报告DNA链的金纳米颗粒(AuNPs-DNA), 模板DNA链能同时与DNA引物片段和修饰在AuNPs上的报告DNA链进行互补杂交形成"三明治"结构, 从而将AuNPs-DNA修饰在电极表面; 当加入电活性物质钌铵(RuHex)后, RuHex可通过静电吸附作用结合在DNA上. AuNPs上修饰的报告DNA链能够吸附大量RuHex, 导致电化学信号放大. 当加入脱氧核糖核苷三磷酸(dNTPs)以及KF-聚合酶后, 引物片段发生延伸反应, 将与模板DNA链杂交的AuNPs-DNA竞争下来, 带走大量的RuHex, 使电信号降低, 从而实现对聚合酶的检测. 实验结果表明, 利用该方法可以检测到5 U/mL的KF-.  相似文献   

20.
A label-free supersandwich fluorescent assay was demonstrated for the first time by taking Hg2+ as a detection candidate. The principle of the proposed supersandwich fluorescent platform is based on the formation of supersandwich structure by T-Hg2+-T coordination and the fluorescence enhancement of the intercalated Genefinder (GF) in double strand DNA (dsDNA). Such supersandwich fluorescent DNA sensor exhibits a linear range of 10–300 nM for the detection of Hg2+, with a detection limit of 2.5 nM on the basis of the 3σ/slope (σ represents the standard deviation of the blank samples), which is well below the permit of the U.S. Environmental Protection Agency (<10 nM). The detection can be fulfilled in less than 10 min. The proposed mix-and-detect fluorescent platform exhibits excellent sensitivity, selectivity, and convenient manipulation. The assay was successfully used to detect Hg2+ in the lake water samples, which suggested its potential in practical samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号