首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 47 毫秒
1.
C. Juan  A. Pena  J. Mañes 《Talanta》2007,73(2):246-250
Ochratoxin A (OTA) is a secondary fungal metabolite produced by several moulds, mainly by Aspergillus ochraceus, A. carbonarius, A. niger and by Penicillium verrucosum. The present work shows the results of comparative studies using different procedures for the analysis of OTA in maize bread samples. The studied analytical methods involved extraction with different volumes of PBS/methanol, different extraction apparatus, and clean-up through immunoaffinity columns. The separation and identification were carried out by high-performance liquid chromatography with fluorescence detection. The optimized method for analysis of OTA in maize bread involved extraction with PBS:methanol (50:50), and clean-up with IAC column. The limit of quantification was 0.033 ng g−1. Recoveries ranged from 87% to 102% for fortifications at 2.000 and 0.500 ng g−1, respectively, within-day R.S.D. of 1.4% and 4.7%. The proposed method was applied to 15 samples and the presence of OTA was found in nine samples at concentrations ranging from nd to 2.650 ng g−1.  相似文献   

2.
A rapid and sensitive method for the determination of carbendazim (methyl benzimidazole-2-ylcarbamate, MBC) and thiabendazole (TBZ) in water and soil samples was developed by using dispersive liquid-liquid microextraction (DLLME) coupled with high performance liquid chromatography with fluorescence detection. The water samples were directly used for the DLLME extraction. For soil samples, the target analytes were first extracted by 0.1 mol L−1 HCl. Then, the pH of the extract was adjusted to 7.0 with 2 mol L−1 NaOH before the DLLME extraction. In the DLLME extraction method, chloroform (CHCl3) was used as extraction solvent and tetrahydrofuran (THF) as dispersive solvent. Under the optimum conditions, the enrichment factors for MBC and TBZ were ranged between 149 and 210, and the extraction recoveries were between 50.8 and 70.9%, respectively. The linearity of the method was obtained in the range of 5-800 ng mL−1 for water sample analysis, and 10-1000 ng g−1 for soil samples, respectively. The correlation coefficients (r) ranged from 0.9987 to 0.9997. The limits of detection were 0.5-1.0 ng mL−1 for water samples, and 1.0-1.6 ng g−1 for soil samples. The relative standard deviations (RSDs) varied from 3.5 to 6.8% (n = 5). The recoveries of the method for MBC and TBZ from water samples at spiking levels of 5 and 20 ng mL−1 were 84.0-94.0% and 86.0-92.5%, respectively. The recoveries for soil samples at spiking levels of 10 and 100 ng g−1 varied between 82.0 and 93.4%.  相似文献   

3.
A novel approach for assembling homogeneous hyperbranched polymers based on non-covalent interactions with aflatoxins was developed; the polymers were used to evaluate the extraction of aflatoxins B1, B2, G1 and G2 (AFB1, AFB2, AFG1 and AFG2) in simulant solutions. The results showed that the extraction efficiencies of three kinds of synthesized polymers for the investigated analytes were not statistically different; as a consequence, one of the representative polymers (polymer I) was used as the solid-phase extraction (SPE) sorbent to evaluate the influences of various parameters, such as desorption conditions, pH, ionic strength, concentration of methanol in sample solutions, and the mass of the sorbent on the extraction efficiency. In addition, the extraction efficiencies for these aflatoxins were compared between the investigated polymer and the traditional sorbent C18. The results showed that the investigated polymer had superior extraction efficiencies. Subsequently, the proposed polymer for the SPE packing material was employed to enrich and analyze four aflatoxins in the cereal powder samples. The limits of detection (LODs) at a signal-to-noise (S/N) ratio of 3 were in the range of 0.012–0.120 ng g−1 for four aflatoxins, and the limits of quantification (LOQs) calculated at S/N = 10 were from 0.04 to 0.40 ng g−1 for four aflatoxins. The recoveries of four aflatoxins from cereal powder samples were in the range of 82.7–103% with relative standard deviations (RSDs) lower than 10%. The results demonstrate the suitability of the SPE approach for the analysis of trace aflatoxins in cereal powder samples.  相似文献   

4.
An automated, confirmatory and sensitive procedure has been developed and validated for the determination of Sudan (I-IV), Sudan Orange G, Sudan Red 7B and Para Red in hot chilli food samples. The proposed method includes pressurised liquid extraction (PLE) with acetone, gel permeation chromatography (GPC) clean-up and detection by liquid chromatography (LC) coupled to electrospray ionization in positive mode tandem mass spectrometry (ESI-MS-MS). The main parameters affecting the performance of the different ionization sources and PLE parameters were previously optimised using statistical design of experiments (DOE). The method was in-house validated on chilli powder and chilli meat. Linear calibrations were obtained with correlation coefficients R2 > 0.999. The limits of detection (LOD) and quantification (LOQ) of the method were in the ranges of 0.002-0.012 ng g−1 and 0.006-0.036 ng g−1, respectively for chilli powder. The decision limit and detection capability were between 0.005-0.022 ng g−1 and 0.007-0.026 ng g−1, respectively for chilli meat. Recoveries ranged from 94% to 105%. The applicability of the method to the determination of azo-dyes in hot chilli products was demonstrated.  相似文献   

5.
The present investigation is the first part of an initiative to prepare a regional map of the natural abundance of selenium in various areas of Brazil, based on the analysis of bean and soil samples. Continuous-flow hydride generation electrothermal atomic absorption spectrometry (HG-ET AAS) with in situ trapping on an iridium-coated graphite tube has been chosen because of the high sensitivity and relative simplicity. The microwave-assisted acid digestion for bean and soil samples was tested for complete recovery of inorganic and organic selenium compounds (selenomethionine). The reduction of Se(VI) to Se(IV) was optimized in order to guarantee that there is no back-oxidation, which is of importance when digested samples are not analyzed immediately after the reduction step. The limits of detection and quantification of the method were 30 ng L−1 Se and 101 ng L−1 Se, respectively, corresponding to about 3 ng g−1 and 10 ng g−1, respectively, in the solid samples, considering a typical dilution factor of 100 for the digestion process. The results obtained for two certified food reference materials (CRM), soybean and rice, and for a soil and sediment CRM confirmed the validity of the investigated method. The selenium content found in a number of selected bean samples varied between 5.5 ± 0.4 ng g−1 and 1726 ± 55 ng g−1, and that in soil samples varied between 113 ± 6.5 ng g−1 and 1692 ± 21 ng g−1.  相似文献   

6.
Abdorreza Mohammadi 《Talanta》2009,78(3):1107-1114
A simple and rapid headspace solid-phase microextraction (HS-SPME) based method is presented for the simultaneous determination of atrazine and ametryn in soil and water samples by ion mobility spectrometry (IMS). A dodecylsulfate-doped polypyrrole (PPy-DS), synthesized by electrochemical method, was applied as a laboratory-made fiber for SPME. The HS-SPME system was designed with a cooling device on the upper part of the sample vial and a circulating water bath for adjusting the sample temperature. The extraction properties of the fiber to spiked soil and water samples with atrazine and ametryn were examined, using a HS-SPME device and thermal desorption in injection port of IMS. Parameters affecting the extraction efficiency such as the volume of water added to the soil, pH effect, extraction time, extraction temperature, salt effect, desorption time, and desorption temperature were investigated. The HS-SPME-IMS method with PPy-DS fiber, provided good repeatability (RSDs < 10 %), simplicity, good sensitivity and short analysis times for spiked soil (200 ng g−1) and water samples (100 and 200 ng mL−1). The calibration graphs were linear in the range of 200-4000 ng g−1 and 50-2800 ng mL−1 for soil and water respectively (R2 > 0.99). Detection limits for atrazine and ametryn were 37 ng g−1 (soil) and 23 ng g−1 (soil) and 15 ng mL−1 (water) and 10 ng mL−1 (water), respectively. To evaluate the accuracy of the proposed method, atrazine and ametryn in the three kinds of soils and two well water samples were determined. Finally, comparing the HS-SPME results for extraction and determination of selected triazines using PPy-DS fiber with the other methods in literature shows that the proposed method has comparable detection limits and RSDs and good linear ranges.  相似文献   

7.
Coacervative microextraction ultrasound-assisted back-extraction technique (CME-UABE) is proposed for the first time for extracting and preconcentrating organophosphates pesticides (OPPs) from honey samples prior to gas chromatography–mass spectrometry (GC–MS) analysis. The extraction/preconcentration technique is supported on the micellar organized medium based on non-ionic surfactant. To enable coupling the proposed technique with GC, it was required to back extract the analytes into hexane. Several variables including, surfactant type and concentration, equilibration temperature and time, matrix modifiers, pH and buffers nature were studied and optimized over the relative response of the analytes. The best working conditions were as follows: an aliquot of 10 mL 50 g L−1 honey blend solution was conditioned by adding 100 μL 0.1 mol L−1 hydrochloric acid (pH 2) and finally extracted with 100 μL Triton X-114 100 g L−1 at 85 °C for 5 min using CME technique. Under optimal experimental conditions, the enrichment factor (EF) was 167 and limits of detection (LODs), calculated as three times the signal-to-noise ratio (S/N = 3), ranged between 0.03 and 0.47 ng g−1. The method precision was evaluated over five replicates at 1 ng g−1 with RSDs ≤9.5%. The calibration graphs were linear within the concentration range of 0.3–1000 ng g−1 for chlorpirifos; and 1–1000 ng g−1 for fenitrothion, parathion and methidathion, respectively. The coefficients of correlation were ≥0.9992. Validation of the methodology was performed by standard addition method at two concentration levels (2 and 20 ng g−1). The recoveries were ≥90%, indicating satisfactory robustness of the methodology, which could be successfully applied for determination of OPPs in honey samples of different Argentinean regions. Two of the analyzed samples showed levels of methidathion ranged between 1.2 and 2.3 ng g−1.  相似文献   

8.
An europium-sensitized time-resolved luminescence (TRL) method was developed to determine oxytetracycline (OTC) in cultivated catfish muscle. Extraction of OTC from fish muscle was performed with pH 4.0 ethylenediaminetetraacetic acid (EDTA)-McIlvaine buffer and clean up with hydrophilic-lipophilic balanced copolymer solid phase extraction (SPE) cartridges. The eluate was used without further concentration for TRL measurement in pH 9.0 micellar tris(hydroxylmethyl)aminomethane (TRIS) buffer. Cetyltrimethylammonium chloride (CTACl) was used as surfactant and EDTA as a co-ligand. The excitation and emission wavelengths were set at 388 and 615 nm, respectively. The linear dynamic range was 0-1000 ng g−1 (R2=0.9995). The recovery was 92-112% in the fortification range of 50-200 ng g−1 and the limits of detection (LOD) ranged from 3 to 7 ng g−1. Incurred catfish samples were used to demonstrate the performance of the method around 100 ng g−1, the European Union maximum residue level.  相似文献   

9.
A rapid and sensitive method has been developed for the simultaneous detection of cyromazine and melamine in chicken eggs using the quick, easy, cheap, effective, rugged and safe (QuEChERS) method coupled with liquid chromatography–tandem mass spectrometry (LC–MS/MS). The optimal extraction solvent for the liquid–liquid extraction was 5 mL of acetonitrile with a 0.1 M hydrochloric acid aqueous solution (99.5:0.5, v/v). The extract was cleaned with 0.5 g of anhydrous magnesium sulfate and 10 mg of graphitized carbon black. The analysis of cyromazine and melamine was accomplished by combining the use of an anion exchange LC column with tandem mass spectrometry in the positive electrospray ionization mode with selected reaction monitoring mode (SRM). The detection limits were 1.6 ng g−1 for cyromazine and 8 ng g−1 for melamine, and the quantitation limits were 5.5 ng g−1 for cyromazine and 25 ng g−1 for melamine. The recoveries of cyromazine and melamine in the spiked egg samples were 83.2% and 104.6%, respectively, with an relative standard deviation (RSD) of less than 18.1%. The intra-day and inter-day precisions, represented by the RSD, ranged from 1.5% to 8.8% and 6.8% to 14.3%, respectively. The proposed method was tested by analyzing chicken eggs from the markets and from the veterinary medicine laboratory. The concentrations of cyromazine and melamine detected in these samples were in the range of 20–94 ng g−1. The results demonstrated that the QuEChERS method combined with LC–MS/MS is a simple, rapid and inexpensive method for the analysis of cyromazine and melamine in eggs.  相似文献   

10.
We describe a simple and sensitive porous polypropylene membrane-protected micro-solid-phase extraction (μ-SPE) approach for the sample preparation and determination of carbamate pesticides in soil samples by high-performance liquid chromatography. The μ-SPE device consisted of C18 sorbent held within a porous polypropylene envelope. In order to achieve optimum performance, several extraction parameters were optimized. Under the most favorable conditions, the extraction efficiency of the μ-SPE was very high, with detection limits in the range of 0.01–0.40 ng g−1. This is more than two orders of magnitude lower than the limits obtained by the United States Environmental Protection Agency Methods 8321A and 8318. A linear relationship was obtained for each analyte in the range of 2 and 200 ng g−1. The relative standard deviation for the analysis of aged soil samples spiked at 5 ng g−1 was ≤11%. The reproducibility of separate μ-SPE device used for experiments was satisfactory (relative standard deviations ranged from 4 to 11%), indicating that the method is reliable for routine environmental analysis.  相似文献   

11.
The optimization and application of gas chromatograph coupled with inductively coupled plasma mass spectrometer (GC-ICPMS) (equipped with a commercially available interface) for the speciation of butyltin compounds in freshwater origin sediment and mussel samples is described. Optimization focused on the system parameters that have the greatest effect on signal intensity such as plasma power, ion lenses and make up gas flow (in the interface). Xenon (Xe) containing argon gas (Ar) was applied as tuning gas providing continuous Xe signal for the optimization of system parameters. It was found that plasma power and make up gas are interrelated variables and provide a set of paired optimum values at each power settings. The absolute optimum values obtained at 800 W plasma power and 1.2 L min−1 make up gas flow rate when 7 mm sample depth was adjusted. The optimum settings obtained were then checked by means of a test solution (tetraethyltin dissolved in hexane). Same optimum conditions were found when tin (Sn) transient signals were monitored. Detection limits were calculated for the three species using the optimized system parameters. Detection limits are the following: for monobutyltin (MBT) 5.6 ng Sn kg−1, for dibutyltin (DBT) 6.6 ng Sn kg−1 and for tributyltin (TBT) 3.4 ng Sn kg−1 obtained. Determination of the butyltin compounds were carried out by means of species-specific isotope dilution analysis. The spike solution contained all species investigated but with altered isotopic composition. Each species were enriched in their 119Sn isotope. Concentrations found in Hungarian freshwater origin mussel and sediment samples ranged between 19 and 39 ng g−1for MBT, between 1.2 and 6.3 ng g−1 for DBT and between 1.2 and 3.2 ng g−1 for TBT indicated as Sn in dry weight. Validation of the method was done by means of certified reference materials (BCR CRM 646 and 477). Good agreement was found between certified and experimental values. Normalized deviation (En) was also computed in order to validate the method used. En values obtained ranged between 0.07 and 0.11 for mussel samples and between 0.26 and 0.72 for sediment samples. These values show that isotope dilution-GC-ICPMS methodology is valid for the determination of MBT, DBT and TBT from both types of matrices.  相似文献   

12.
In this work, an isotope dilution method for the determination, in agricultural and industrial soil samples, of tetrabromobisphenol-A, tetrachlorobisphenol-A and bisphenol-A by gas chromatography–mass spectrometry was developed. The compounds were extracted from soil by sonication assisted extraction in small columns (SAESC) with a low volume of ethyl acetate as extraction solvent. For dirty soil samples, such as industrial soils, a simultaneous clean-up on an acidified Florisil–anhydrous sodium sulfate mixture was carried out to remove interferences. After extraction, solvent was evaporated and analytes were derivatized with N,O-bis(trimethylsilyl)trifluoroacetamide (BSTFA) and determined by isotope dilution gas chromatography with electron impact mass spectrometric detection in the selected ion monitoring mode (GC–MS–SIM), using 13C12 labeled compounds as internal standards. Recoveries from spiked samples were between 88% and 108% and the estimated limits of detection (S/N = 3) varied from 30 pg g−1 to 90 pg g−1. The response obtained with this method was linear over the range assayed, 5–300 ng ml−1, with correlation coefficients equal or higher than 0.999. The validated method was used to investigate the levels of these phenolic compounds in soil samples collected from different locations in Spain. Bisphenol-A was detected in all samples at concentrations from 0.7 ng g−1 to 4.6 ng g−1 in agricultural soils and from 1.1 ng g−1 to 44.5 ng g−1 in industrial soils. Tetrabromobisphenol-A was found in various soil samples at levels in the range of 3.4–32.2 ng g−1 in industrial soils and at 0.3 ng g−1 in one agricultural soil, whereas tetrachlorobisphenol-A was not detected.  相似文献   

13.
A new method for determination of fatty acid amides in polyethylene packaging film was developed using gas chromatography/mass spectrometry (GC/MS). Liquid extraction, Soxhlet extraction ultrasonic-assisted extraction and pressurized solvent extraction (PSE) methods were compared and the results showed that pressurized solvent extraction was the best for extracting these compounds. After extraction, solvent was blown by nitrogen and a trifluoroethyl derivation step was carried out. The derivative compounds were identified and quantified by GC/MS using an HP-Innowax column. The retention times were 6.20 min for derivative hexadecanoamide, 8.56 min for derivative octadecanamide, 8.84 min for derivative oleamide and 13.68 min for derivative erucamide, respectively. The detection limits were 61.0 ng g−1, 74.0 ng g−1, 103.0 ng g−1, and 105.0 ng g−1, respectively, and the linearity were good. The proposed method was applied satisfactorily to determine these chemicals in different types of polyethylene samples.  相似文献   

14.
Pesticides residues in aquatic ecosystems are an environmental concern which requires efficient analytical methods. In this study, we proposed a generic method for the quantification of 13 pesticides (azoxystrobin, clomazone, diflufenican, dimethachlor, carbendazim, iprodion, isoproturon, mesosulfuron-methyl, metazachlor, napropamid, quizalofop and thifensulfuron-methyl) in three environmental matrices. Pesticides from water were extracted using a solid phase extraction system and a single solid-liquid extraction method was optimized for sediment and fish muscle, followed by a unique analysis by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS). Limits of quantification were below 5 ng L−1 for water (except for fluroxypyr and iprodion) and ranged between 0.1 ng g−1 and 57.7 ng g−1 for sediments and regarding fish, were below 1 ng g−1 for 8 molecules and were determined between 5 and 49 ng g−1 for the 5 other compounds. This method was finally used as a new routine practice for environmental research.  相似文献   

15.
A new method for the determination of aflatoxins B1, B2, G1, and G2 (AFB1, AFB2, AFG1, AFG2) in cereal flours based on solid-phase microextraction (SPME) coupled with high performance liquid chromatography with post-column photochemical derivatization and fluorescence detection (SPME–HPLC–PD–FD) has been developed. Aflatoxins were extracted from cereal flour samples by a methanol:phosphate buffer (pH 5.8, I = 0.1) (80:20, v/v) solution, followed by a SPME step. Different SPME and HPLC–PD–FD parameters (fiber polarity, temperature, pH, ionic strength, adsorption and desorption time, mobile phase) have been investigated and optimized. This method, which was assessed for the analysis of different cereal flours, showed interesting results in terms of LOD (from 0.035 to 0.2 ng g−1), LOQ (from 0.1 to 0.63 ng g−1, respectively), within and inter-day repeatability (2.27% and 5.38%, respectively) linear ranges (up to 20 ng g−1 for AFB1 and AFG1 and 6 ng g−1 for AFB2 and AFG2), and total raw extraction efficiency (in the range 55–59% at concentrations in the range 0.3–1 ng g−1 and 49–52% at concentrations in the range 1–10 ng g−1). The results were also compared with the purification step carried out by conventional immunoaffinity columns.  相似文献   

16.
A liquid chromatography-tandem mass spectrometric with electrospray ionization (LC/ESI-MS/MS) method for determining the four naturally occurring aflatoxins (AFs) B1, B2, G1, and G2 in olive oil is proposed. AFs were extracted from oil sample by means of matrix solid phase dispersion (MSPDE), utilizing C18 as dispersing material. No further purification step, such as lipid removal, was performed. Aflatoxin M1, the hepatic metabolite of AFB1, was employed as internal standard. Olive oil extract was analyzed by LC/ESI-MS/MS in positive ionization mode, with multireaction monitoring acquisition. Due to a signal suppression ranging between 4 and 23%, quantitation was performed by matrix-matched calibration curves. The regression line coefficients of determination were above 0.9991. Sample recoveries ranged from 92 to 107%, with relative standard deviations below 13% for spiking levels between 0.5 and 5 ng g−1; method quantification limits ranged between 0.04 and 0.12 ng g−1. The developed LC/ESI-MS/MS method, although not as sensitive as LC coupled to fluorescence detection, is rapid, selective, accurate and precise, thus it can be used as confirmatory assay. The MSPDE appears suitable for application to other oleaginous matrices and for multiresidue investigation.  相似文献   

17.
A single-step, environmentally friendly sample treatment was developed and used in combination with liquid chromatography–tandem mass spectrometry (LC–MS/MS) for the quantitation of hexabromocyclododecane (HBCD) stereoisomers in fish. It was based on the microextraction of the stereoisomers with a supramolecular solvent (SUPRAS) made up of reverse aggregates of decanoic acid (DeA). The procedure involved the stirring of the fish sample (750 mg) with 600 μL of SUPRAS for five minutes, subsequent centrifugation for extract separation from matrix components and direct analysis of the extract after dilution 1:1 with methanol. Individual enantiomers of α-, β- and γ-HBCD were separated on a chiral stationary phase of β-cyclodextrin and quantified by monitoring of the [M−H] → Br transition at m/z 640.9→80.9. Driving forces for the microextraction of HBCD in the SUPRAS involved both dispersion and dipole–dipole interactions. Quantitation limits for the determination of individual HBCD enantiomers in hake, cod, sole, panga, whiting and sea bass were within the intervals 0.5–3.4 ng g−1, 0.9–2.5 ng g−1, 0.6–1.4 ng g−1, 1.0–5.6 ng g−1, 0.8–1.3 ng g−1 and 0.5–3.5 ng g−1, respectively. Recoveries for fish samples fortified at the ng g−1 level ranged between 87 and 114% with relative standard deviations from 1 to 10%. The sample treatment proposed greatly simplifies current procedures for extraction of HBCD stereoisomers and is a useful tool for the development of a large scale database for their presence in fish.  相似文献   

18.
In the present study, a novel analytical approach for the simultaneous determination of 27 brominated flame retardants (BFRs), namely polybrominated diphenyl ethers (PBDEs), isomers of hexabromocyclododecane (HBCD), tetrabromobisphenol A (TBBPA) and several novel BFRs (NBFRs), together with 18 perfluoroalkyl substances (PFASs) in indoor dust was developed and validated. To achieve integrated isolation of analytes from the sample and their fractionation, a miniaturized method based on matrix solid phase dispersion (MSPD) was employed. Principally, after mixing the dust (<0.1 g) with the Florisil®, the mixture was applied on the top of a sorbent (Florisil®) placed in glass column and then analytes were eluted using solvents with different polarities. For the identification/quantification of target compounds largely differing in polarity, complementary techniques represented by gas and liquid chromatography coupled to tandem mass spectrometry (GC–MS/MS and LC–MS/MS) were used. The results of validation experiments, which were performed on the SRM 2585 material (for PBDEs, HBCDs and TBBPA), were in accordance with the certified/reference values. For other analytes (NBFRs and PFASs), the analysis of an artificially contaminated blank dust sample was realized. The method recoveries for all target compounds ranged from 81 to 122% with relative standard deviations lower than 21%. The quantification limits were in the range of 1–25 ng g−1 for BFRs and 0.25–1 ng g−1 for PFASs. Finally, 18 samples (6 households × 3 sampling sites) were analyzed. The high variability between concentrations of PFASs and BFRs in the dust samples from various households as well as collecting sites in a respective house was observed. The total amounts of PFASs and BFRs were in the range of 1.58–236 ng g−1 (median 10.6 ng g−1) and 39.2–2320 ng g−1 (median 325 ng g−1), respectively. It was clearly shown that dust from the indoor environment might be a significant source of human exposure to various organohalogen pollutants.  相似文献   

19.
An analytical method combining both a simple, fast and efficient solvent microextraction and a sensitive and selective monitoring mode, based on ion isolation ion-trap mass spectrometry (MS), was developed for analysis of perfluorinated compounds (PFCs) in biota. The method involved the vortex-shaking of 0.2 g of tissue sample and 800 μL of tetrahydrofuran (THF):water (75:25, v/v) for 7 min, subsequent centrifugation for 13 min and direct quantitation of PFCs in the extract against solvent-based calibration curves. Selection of solvent composition was based on Hildebrand solubility parameters and their components (i.e. dispersion, dipole–dipole and hydrogen bonding forces). Recoveries in samples for PFCs with hydrocarbon chain lengths between C4 and C14 ranged from 85 to 111%, with relative standard deviations between 1 and 11%. The ion isolation monitoring mode, proposed for the first time for ion-trap-MS quantitation, proved to be effective in avoiding space-charge effects caused by co-eluting matrix components while keeping the sensitivity of full scan MS operation. Detection limits of the method were in the range 0.8−6 ng g−1 for perfluoroalkyl carboxylates (PFACs) and 0.4–0.8 ng g−1 for perfluoroalkyl sulfonates (PFASs) in wet weight samples. The method was validated using a reference material made up of flounder muscle and by comparison with triple quadrupole MS measurements and it was applied to the determination of PFCs in liver and muscle samples from sea birds and fishes. Only PFASs were found in samples at quantifiable levels (2.9 and 13.1 ng g−1) while PFACs were below the respective quantitation limits. This method allows quick and simple microextraction of PFCs with minimal solvent consumption, while delivering accurate and precise data.  相似文献   

20.
Ultrasound-assisted leaching-dispersive solid-phase extraction followed by dispersive liquid-liquid microextraction (USAL-DSPE-DLLME) technique has been developed as a new analytical approach for extracting, cleaning up and preconcentrating polybrominated diphenyl ethers (PBDEs) from sediment samples prior gas chromatography-tandem mass spectrometry (GC-MS/MS) analysis. In the first place, PBDEs were leached from sediment samples by using acetone. This extract was cleaned-up by DSPE using activated silica gel as sorbent material. After clean-up, PBDEs were preconcentrated by using DLLME technique. Thus, 1 mL acetone extract (disperser solvent) and 60 μL carbon tetrachloride (extraction solvent) were added to 5 mL ultrapure water and a DLLME technique was applied. Several variables that govern the proposed technique were studied and optimized. Under optimum conditions, the method detection limits (MDLs) of PBDEs calculated as three times the signal-to-noise ratio (S/N) were within the range 0.02-0.06 ng g−1. The relative standard deviations (RSDs) for five replicates were <9.8%. The calibration graphs were linear within the concentration range of 0.07-1000 ng g−1 for BDE-47, 0.09-1000 ng g−1 for BDE-100, 0.10-1000 ng g−1 for BDE-99 and 0.19-1000 ng g−1 for BDE-153 and the coefficients of estimation were ≥0.9991. Validation of the methodology was carried out by standard addition method at two concentration levels (0.25 and 1 ng g−1) and by comparing with a reference Soxhlet technique. Recovery values were ≥80%, which showed a satisfactory robustness of the analytical methodology for determination of low PBDEs concentration in sediment samples.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号