首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A simple dispersive liquid-liquid microextraction methodology based on the application of 1-hexylpyridinium hexafluorophosphate [HPy][PF6] ionic liquid (IL) as an extractant solvent was proposed for the preconcentration of trace levels of zinc as a prior step to determination by flame atomic absorption spectrometry (FAAS). Zinc was complexed with 8-hydroxyquinoline (oxine) and extracted into ionic liquid. Some effective factors that influence the microextraction efficiency such as pH, oxine concentration, amount of IL, ionic strength, temperature and centrifugation time were investigated and optimized. In the optimum experimental conditions, the limit of detection (3 s) and the enhancement factor were 0.22 μg L−1 and 71, respectively. The relative standard deviation (RSD) for six replicate determinations of 13 μg L−1 Zn was 1.92%. In order to validate the developed method, a certified reference material (NIST SRM 1549) was analyzed and the determined values were in good agreement with the certified values. The proposed method was successfully applied to the trace determination of zinc in water and milk samples.  相似文献   

2.
Arpa Şahin C  Durukan I 《Talanta》2011,85(1):657-661
In this article, a new ligandless solidified floating organic drop microextraction (LL-SFODME) method has been developed for preconcentration of trace amount of cadmium as a prior step to its determination by flow injection-flame atomic absorption spectrometry (FI-FAAS). The methodology is based on the SFODME of cadmium with 1-dodecanol in the absence of chelating agent. Several factors affecting the microextraction efficiency, such as, pH, sodium dodecylbenzenesulfonate (SDBS) concentration, extraction time, stirring rate and temperature were investigated and optimized. Under optimized experimental conditions an enhancement factor of 205 was obtained for 100 mL of sample solution. The calibration graph was linear in the range of 1.0-25.0 ng mL−1, the limit of detection (3s) was 0.21 ng mL−1 and the limit of quantification (10s) was 0.62 ng mL−1. The relative standard deviation (RSD) for 10 replicate measurements of 10 ng mL−1 cadmium was 4.7%. The developed method was successfully applied to the extraction and determination of cadmium in standard and several water samples and satisfactory results were obtained.  相似文献   

3.
Easy and innovative non-dispersive ionic liquid based microextraction (NDILME) has been developed for preconcentration of trace level of cadmium (Cd) in aqueous real surface water samples prior to couple with graphite furnace atomic absorption spectrometry (GFAAS). A 200 cm long narrow glass column containing aqueous solution of standard/sample was used to increase phase transfer ratio by providing more contact area between two medium (aqueous and extractive), which drastically improve the recoveries of labile hydrophobic chelate of Cd ammonium pyrrolidinedithiocarbamate (APDC), into ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate [C4mim][PF6]. Different aspect of the desire method have been investigated and optimized. Under the optimized key experimental variables, limit of detection (LOD) and enhancement factor (EF) were achieved to be 0.5 ng L−1 and 150, respectively. Reliability of the model method was checked by relative standard deviation (%RSD), which was found to be < 5%. Validity and accuracy of the developed method was checked by analysis of certified reference water samples (SLRS-4 Riverine water) using standard addition method.  相似文献   

4.
In this article, a new ligandless dispersive liquid-liquid microextraction method has been developed for preconcentration of trace quantities of silver as a prior step to its determination by flame atomic absorption spectrometry. In the proposed approach, carbon tetrachloride and ethanol were used as extraction and dispersive solvents. Several factors that may be affected on the extraction process, like, extraction solvent, disperser solvent, the volume of extraction and disperser solvent, pH of the aqueous solution and extraction time were optimized. Under the optimal conditions, the calibration curve was linear in the range of 5.0 ng mL−1 to 2.0 μg mL−1 of silver with R2 = 0.9995 (n = 9) and detection limit based on three times the standard deviation of the blank (3Sb) was 1.2 ng mL−1 in original solution. The relative standard deviation for eight replicate determination of 0.5 μg mL−1 silver was ±1.5%. The high efficiency of dispersive liquid-liquid microextraction to carry out the determination of silver in complex matrices was demonstrated. The proposed method has been applied for determination of trace amount of silver in standard and water samples with satisfactory results.  相似文献   

5.
A rapid, sensitive and efficient liquid phase microextraction (LPME) method was developed to determine trace concentrations of some organophosphorus pesticides in water samples. This method combines liquid phase microextraction with gas chromatographic (GC) analysis in a simple and inexpensive apparatus involving very little organic solvent consumption. It involves exposing a floated drop of an organic solvent on the surface of aqueous solution in a sealed vial. Experimental parameters which control the performance of LPME such as type of organic solvent, organic solvent and sample volumes, sample stirring rate, sample solution temperature, salt addition and exposure time were investigated and optimized. Finally, the enrichment factor, dynamic linear range (DLR), limit of detection (LOD) and precision of the method were evaluated by the water samples spiked with organophosphorus pesticides. Using optimum extraction conditions, very low detection limits (0.01-0.04 μg L−1) and good linearities (0.9983 < r2 < 0.9999) were achieved. The LPME was performed for determination of organophosphorus pesticides in different types of natural water samples and acceptable recoveries (96-104%) and precisions (3.5 < R.S.D.% < 8.9) were obtained. The results suggested that the newly proposed LPME method is a rapid, accurate and effective sample preparation method and could be successfully applied for extraction and determination of organophosphorus pesticides in water samples.  相似文献   

6.
The aim of the present work is combination of the advantages of magnetic solid phase extraction (MSPE) and dispersive liquid phase microextraction (DLLME) followed by filtration-based phase separation. A new pretreatment method was developed for trace determination of megestrol acetate and levonorgestrel by liquid chromatography/ultraviolet detection in biological and wastewater samples. After magnetic solid phase extraction, the eluent of MSPE was used as the disperser solvent for DLLME. Emulsion resulted from DLLME procedure was passed through the in-line filter for phase separation. Finally the retained analytes in the filter was washed with mobile phase of liquid chromatography and transferred to the column for separation. This approach offers the preconcentration factors of 3680 and 3750 for megestrol acetate and levonorgestrel, respectively. This guarantees determination of the organic compounds at trace levels. The important parameters influencing the extraction efficiency were studied and optimized. Under the optimal extraction conditions, a linear range of 0.05–50 ng mL−1 (R2 > 0.998) and limit of detection of 0.03 ng mL−1 were obtained for megestrol acetate and levonorgestrel. Under optimal conditions, the method was successfully applied for determination of target analytes in urine and wastewater samples and satisfactory results were obtained (RSDs < 6.8%).  相似文献   

7.
Ultrasound-assisted dispersive liquid–liquid microextraction coupled with high-performance liquid chromatography-fluorescence detection was used for the extraction and determination of three biogenic amines including octopamine, tyramine and phenethylamine in rice wine samples. Fluorescence probe 2,6-dimethyl-4-quinolinecarboxylic acid N-hydroxysuccinimide ester was applied for derivatization of biogenic amines. Acetonitrile and 1-octanol were used as disperser solvent and extraction solvent, respectively. Extraction conditions including the type of extraction solvent, the volume of extraction solvent, ultrasonication time and centrifuging time were optimized. After extraction and centrifuging, analyte was injected rapidly into high-performance liquid chromatography and then detected with fluorescence. The calibration graph of the proposed method was linear in the range of 5–500 μg mL−1 (octopamine and tyramine) and 0.025–2.5 μg mL−1 (phenethylamine). The relative standard deviations were 2.4–3.2% (n = 6) and the limits of detection were in the range of 0.02–5 ng mL−1. The method was applied to analyze the rice wine samples and spiked recoveries in the range of 95.42–104.56% were obtained. The results showed that ultrasound-assisted dispersive liquid–liquid microextraction was a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of biogenic amines.  相似文献   

8.
A simple, rapid, and efficient method, based on surfactant assisted dispersive liquid-liquid microextraction (SA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and determination of chlorophenols as model compounds in environmental water samples. A conventional cationic surfactant called cethyltrimethyl ammonium bromide (CTAB) was used as a disperser agent in the proposed approach. Thirty-five microliter of 1-octanol as an extraction solvent was injected rapidly into 11 mL aqueous sample containing 0.09 mmol L−1 of CTAB, the mixture was then shaken for 3 min to disperse the organic phase. Having the extraction procedure been completed, the mixture was centrifuged and 20 μL of collected phase was injected into HPLC for subsequent analysis. Some parameters such as the type and volume of the extraction solvent, the type and concentration of surfactant, pH, ionic strength, shaking time, extraction temperature and centrifugation time were optimized. The preconcentration factors (PFs) in a range of 187-353 were obtained under the optimum conditions. The linear range, detection limit (S/N = 3), and precision (n = 5) were 0.2-200, 0.1 μg L−1, and 4.7-6.9%, respectively. Tap water, sea water and mineral water samples were successfully analyzed for the existence of chlorophenols using the proposed method.  相似文献   

9.
Pei Liang  Ehong Zhao  Feng Li 《Talanta》2009,77(5):1854-1857
A new method for the determination of palladium was developed by dispersive liquid-liquid microextraction preconcentration and graphite furnace atomic absorption spectrometry detection. In the proposed approach, diethyldithiocarbamate (DDTC) was used as a chelating agent, and carbon tetrachloride and ethanol were selected as extraction and dispersive solvent. Some factors influencing the extraction efficiency of palladium and its subsequent determination, including extraction and dispersive solvent type and volume, pH of sample solution, concentration of the chelating agent and extraction time, were studied and optimized. Under the optimum conditions, the enrichment factor of this method for palladium reached at 156. The detection limit for palladium was 2.4 ng L−1 (3σ), and the relative standard deviation (R.S.D.) was 4.3% (n = 7, c = 1.0 ng mL−1). The method was successfully applied to the determination of trace amount of palladium in water samples.  相似文献   

10.
Room temperature ionic liquids can be considered as environmentally benign solvents with unique physicochemical properties. Ionic liquids can be used as extractant phases in SDME, being compatible with chromatographic systems. A single-drop microextraction method was developed for separation and preconcentration of mercury species (MeHg+, EtHg+, PhHg+ and Hg2+), which relies on the formation of the corresponding dithizonates and microextraction of these neutral chelates onto a microdrop of an ionic liquid. Afterwards, the separation and determination were carried out by high-performance liquid chromatography with a photodiode array detector. Variables affecting the formation and extraction of mercury dithizonates were optimized. The optimum conditions found were: microextraction time, 20 min; stirring rate, 900 rpm; pH, 11; ionic liquid type, 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]); drop volume, 4 μL; and no sodium chloride addition. Limits of detection were between 1.0 and 22.8 μg L−1 for the four species of mercury, while the repeatability of the method, expressed as relative standard deviation, was between 3.7 and 11.6% (n = 8). The method was finally applied to the determination of mercury species in different water samples.  相似文献   

11.
A simple ultrasound-assisted dispersive liquid–liquid microextraction method combined with liquid chromatography was developed for the preconcentration and determination of six pyrethroids in river water samples. The procedure was based on a ternary solvent system to formatting tiny droplets of extractant in sample solution by dissolving appropriate amounts of water-immiscible extractant (tetrachloromethane) in watermiscible dispersive solvent (acetone). Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvent, extraction time, ultrasonic time, and centrifuging time) were evaluated. Under the optimum condition, good linearity was obtained in a range of 0.00059–1.52 mg L−1 for all analytes with the correlation coefficient (r2) > 0.999. Intra-assay and inter-assay precision evaluated as the relative standard deviation (RSD) were less than 3.4 and 8.9%. The recoveries of six pyrethroids at three spiked levels were in the range of 86.2–109.3% with RSD of less than 8.7%. The enrichment factors for the six pyrethroids were ranged from 767 to 1033 folds.  相似文献   

12.
In the present study, a rapid, highly efficient and environmentally friendly sample preparation method named ionic liquid-based ultrasound-assisted dispersive liquid–liquid microextraction (IL-USA-DLLME), followed by high performance liquid chromatography (HPLC) has been developed for the extraction and preconcentration of four benzophenone-type ultraviolet (UV) filters (viz. benzophenone (BP), 2-hydroxy-4-methoxybenzophenone (BP-3), ethylhexyl salicylate (EHS) and homosalate (HMS)) from three different water matrices. The procedure was based on a ternary solvent system containing tiny droplets of ionic liquid (IL) in the sample solution formed by dissolving an appropriate amount of the IL extraction solvent 1-hexyl-3-methylimidazolium tris(pentafluoroethyl)trifluorophosphate ([HMIM][FAP]) in a small amount of water-miscible dispersive solvent (methanol). An ultrasound-assisted process was applied to accelerate the formation of the fine cloudy solution, which markedly increased the extraction efficiency and reduced the equilibrium time. Various parameters that affected the extraction efficiency (such as type and volume of extraction and dispersive solvents, ionic strength, pH and extraction time) were evaluated. Under optimal conditions, the proposed method provided good enrichment factors in the range of 354–464, and good repeatability of the extractions (RSDs below 6.3%, n = 5). The limits of detection were in the range of 0.2–5.0 ng mL−1, depending on the analytes. The linearities were between 1 and 500 ng mL−1 for BP, 5 and 500 ng mL−1 for BP-3 and HMS and 10 and 500 ng mL−1 for EHS. Finally, the proposed method was successfully applied to the determination of UV filters in river, swimming pool and tap water samples and acceptable relative recoveries over the range of 71.0–118.0% were obtained.  相似文献   

13.
The applicability of hollow fiber-based liquid phase microextraction (HF-LPME) was evaluated for the extraction and preconcentration of three antidepressant drugs (amitriptyline, imipramine and sertraline) prior to their determination by HPLC-UV. The target drugs were extracted from 11.0 mL of aqueous solution with pH 12.0 (source phase) into an organic extracting solvent (n-dodecane) impregnated in the pores of a hollow fiber and finally back extracted into 24 μL of aqueous solution located inside the lumen of the hollow fiber and adjusted to pH 2.1 using 0.1 M of H3PO4 (receiving phase). The extraction was performed due to pH gradient between the inside and outside of the hollow fiber membrane. In order to obtain high extraction efficiency, the parameters affecting the HF-LPME including pH of the source and receiving phases, the type of organic phase, ionic strength and volume of the source phase, stirring rate and extraction time were studied and optimized. Under the optimized conditions, enrichment factors up to 300 were achieved and the relative standard deviation (R.S.D.%) of the method was in the range of 2-12%. The calibration curves were obtained in the range of 5-500 μg L−1 with reasonable linearity (R2 > 0.998) and the limits of detection (LODs) ranged between 0.5 and 0.7 μg L−1 (based on S/N = 3). Finally, the applicability of the proposed method was evaluated by extraction and determination of the drugs in urine, plasma and tap water samples. The results indicated that hollow fiber microextraction method has excellent clean-up and high-preconcentration factor and can be served as a simple and sensitive method for monitoring of antidepressant drugs in the biological samples.  相似文献   

14.
A simple and highly sensitive analytical methodology for isolation and determination of patulin in apple-juice samples, based on enzyme-assisted extraction (EAE) and ionic liquid-based dispersive liquid–liquid microextraction (IL-DLLME) was developed and optimized. Enzymes play essential roles in eliminating interference and increasing the extraction efficiency of patulin. Apple-juice samples were treated with pectinase and amylase. A mixture of 80 μL ionic liquid and 600 μL methanol (disperser solvent) was used for the IL-DLLME process. The sedimented phase was analyzed by high-performance liquid chromatography (HPLC). Experimental parameters controlling the performance of DLLME, were optimized using response surface methodology (RSM) based on central composite design (CCD). Under optimum conditions, the calibration curves showed high levels of linearity (R2 > 0.99) for patulin in the range of 1–200 ng g−1. The relative standard deviation (RSD) for the seven analyses was 7.5%. The limits of detection (LOD) and limits of quantification (LOQ) were 0.15 ng g−1 and 0.5 ng g−1, respectively. The merit figures, compared with other methods, showed that new proposed method is an accurate, precise and reliable sample-pretreatment method that substantially reduces sample matrix interference and gives very good enrichment factors and detection limits for investigation trace amount of patulin in apple-juice samples.  相似文献   

15.
A miniaturized method based on liquid-phase microextraction (LPME) in combination with microvolume UV-vis spectrophotometry for monitoring ammonia in waters is proposed. The methodology is based on the extraction of the ion pair formed between the blue indophenol obtained according to the Berthelot reaction and a quaternary ammonium salt into a microvolume of organic solvent. Experimental parameters affecting the LPME performance such as type and concentration of the quaternary ammonium ion salt required to form the ion pair, type and volume of extractant solvent, effect of disperser solvent, ionic strength and extraction time, were optimized. A detection limit of 5.0 μg L−1 ammonia and an enrichment factor of 30 can be attained after a microextraction time of 4 min. The repeatability, expressed as relative standard deviation, was 7.6% (n = 7). The proposed method can be successfully applied to the determination of trace amounts of ammonia in several environmental water samples.  相似文献   

16.
Ibrahim S.I. Adam 《Talanta》2009,77(3):1160-1164
A newly simple flow injection wetting-film extraction system coupled to flame atomic absorption spectrometry (FAAS) has been developed for trace amount of cadmium determination. The sample was mixed on-line with sodium diethyl dithiocarbamate and the produced non-charged Cd(II)-diethyl dithiocarbamate (DDTC) chelate complex was extracted on the thin film of diisobutyl ketone (DIBK) on the inner wall of the PTFE extraction coil. The wetting-film with the extracted analyte was then eluted by a segment of the cover solvent, and transported directly to the FAAS for evaluation. All the important chemical and flow parameters were optimized. Under the optimized conditions an enhancement factor of 35, a sample frequency of 22 h−1 and a detection limit of cL = 0.7 μg l−1 Cd(II) were obtained for 60 s preconcentration time. The calibration curve was linear over the concentration range 1.5-45.0 μg l−1 Cd(II) and the relative standard deviation, R.S.D. (n = 10) was 3.9%, at 10.0 μg l−1 concentration level. The developed method was successfully applied to cadmium determination in a variety of environmental water samples as well as waste-water sample.  相似文献   

17.
A novel microextraction technique, air-assisted liquid–liquid microextraction (AALLME), which is a new version of dispersive liquid–liquid microextraction (DLLME) method has been developed for extraction and preconcentration of phthalate esters, dimethyl phthalate (DMP), diethyl phthalate (DEP), di-iso-butyl phthalate (DIBP), di-n-butyl phthalate (DNBP), and di-2-ethylhexyl phthalate (DEHP), from aqueous samples prior to gas chromatography–flame ionization detection (GC–FID) analysis. In this method, much less volume of an organic solvent is used as extraction solvent in the absence of a disperser solvent. Fine organic droplets were formed by sucking and injecting of the mixture of aqueous sample solution and extraction solvent with a syringe for several times in a conical test tube. After extraction, phase separation was performed by centrifugation and the enriched analytes in the sedimented phase were determined by GC–FID. Under the optimum extraction conditions, the method showed low limits of detection and quantification between 0.12–1.15 and 0.85–4 ng mL−1, respectively. Enrichment factors (EFs) and extraction recoveries (ERs) were in the ranges of 889–1022 and 89–102%, respectively. The relative standard deviations (RSDs) for the extraction of 100 ng mL−1 and 500 ng mL−1 of each phthalate ester were less than 4% for intra-day (n = 6) and inter-days (n = 4) precision. Finally some aqueous samples were successfully analyzed using the proposed method and three analytes, DIBP, DNBP and DEHP, were determined in them at ng mL−1 level.  相似文献   

18.
Dichlorodiphenyltrichloroethane (DDT) and its main metabolites are important environmental pollutants and have been in the focusing center. It is of great value to develop simple, rapid, sensitive and easy to operate method for monitoring them. Present work established a novel temperature controlled ionic liquid dispersive liquid phase microextraction method in combination with high performance liquid chromatography for the enrichment and determination of DDT and its metabolites. Proposed method used only ionic liquid 1-hexyl-3-methylimidazolium hexafluorophosphate ([C6MIM][PF6]) for the enrichment and overcame the demerits of conventional single drop liquid phase microextraction and dispersive liquid-liquid microextraction. Temperature has two functions here, one is to promote the dispersing of ionic liquid into the solution and forming infinitesimal micro-drop and increasing the chance of the analytes extracted into ionic liquid phase, and the other one is to perform phase-separation. A series of factors that would affect the extraction performance was systematically investigated and optimized. The experimental results indicated that the detection limits obtained for p,p′-DDD, p,p′-DDT, o,p′-DDT and p,p′-DDE were 0.24, 0.24, 0.45, 0.24 ng mL−1, respectively. The linear ranges for them were from 1.0 to 100 ng mL−1, and the precisions were between 3.8% and 6.7% (n = 6). The proposed method was validated with four real-world samples and excellent results were achieved.  相似文献   

19.
An ionic liquid-based single-drop microextraction (IL-SDME) procedure using IL as an extractant on-line coupled to capillary electrophoresis (CE) is proposed. The method is capable of quantifying trace amounts of phenols in environmental water samples. For the SDME of three phenols, a 2.40 nL IL microdrop was exposed for 10 min to the aqueous sample and then was directly injected into the capillary column for analysis. Extraction parameters such as the extraction time, the IL single-drop volume, pH of the sample solution, ionic strength, volume of the sample solution and the extraction temperature were systematically investigated. Detection limits to three phenols were less than 0.05 μg mL−1, and their calibration curves were all linear (R2 ≥ 0.9994) in the range from 0.05 to 50 μg mL−1. And enrichment factors for three phenols were 156, 107 and 257 without agitation, respectively. This method was then utilized to analyze two real environmental samples from Yellow River and tap water, obtaining satisfactory results. Compared with the usual SDME for CE, IL-SDME–CE is a simple, low-cost, fast and environmentally friendly preconcentration technique.  相似文献   

20.
Dispersive liquid–liquid microextraction (DLLME) coupled with high-performance liquid chromatography (HPLC)-UV detection was applied for the extraction and determination of bisphenol A (BPA) in water samples. An appropriate mixture of acetone (disperser solvent) and chloroform (extraction solvent) was injected rapidly into a water sample containing BPA. After extraction, sedimented phase was analyzed by HPLC-UV. Under the optimum conditions (extractant solvent: 142 μL of chloroform, disperser solvent: 2.0 mL of acetone, and without salt addition), the calibration graph was linear in the range of 0.5–100 μg L−1 with the detection limit of 0.07 μg L−1 for BPA. The relative standard deviation (RSD, n = 5) for the extraction and determination of 100 μg L−1 of BPA in the aqueous samples was 6.0%. The results showed that DLLME is a very simple, rapid, sensitive and efficient analytical method for the determination of trace amount of BPA in water samples and suitable results were obtained.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号