首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study addresses the electrochemical behavior and the analytical applications of six 2-nitrophenylbenzimidazole derivatives with activity against Trypanosoma cruzi. When studied in a wide range of pH, by differential pulse polarography, tast polarography and cyclic voltammetry, these compounds exhibited two irreversible cathodic responses. With analytical purposes, the differential pulse polarography mode was selected, which exhibited adequate analytical parameters of repeatability, reproducibility and selectivity. The percentage of recovery was in all cases over 99%, and the detection and quantitation limits were at the level of 1 × 10−7 mol L−1 and 1 × 10−6 mol L−1, respectively. In addition, the differential pulse polarography method was successfully applied to study the hydrolytic degradation kinetic of one of the tested compounds. Activation energy, kinetic rate constants at different temperatures and half-life values of such application are reported.  相似文献   

2.
Cyclic voltammetry was used to investigate the electrochemical behaviour of triclosan (2,2,4′-trichloro-2′-hydroxydiphenyl ether) at a screen-printed carbon electrode (SPCE). It was found that a single anodic peak occurred over the pH range 6.0–12.0; this peak was considered to result from an irreversible oxidation reaction at the phenolic moiety. A plot of Ep versus pH was constructed and from the break point a pKa value of 7.9 was obtained, thus agreeing with the literature value. Detailed voltammetric studies were performed at pH 10, where the analyte exists as an anion. It was demonstrated that, at an initial potential of 0 V, the anion underwent electrosorption prior to electrochemical oxidation. The oxidation reaction appeared to involve a one-electron transfer, as deduced from a calculated na value of 0.5; the same value was obtained at pH 7.0. In contrast to triclosan, triclosan monophosphate was found to be electrochemically inactive when subjected to voltammetry under the stated conditions.

The electrochemical oxidation of triclosan at a SPCE was exploited for its determination (0.3%) in commercial toothpaste and mouthrinse products using differential pulse voltammetry. The recovery and precision data indicated that this approach may have application in routine quality control analysis.  相似文献   


3.
《Analytical letters》2012,45(8):1311-1332
Silver, bismuth, and bismuth-silver nanoparticles were synthesized and characterized by cyclic voltammetry, electrochemical impedance spectroscopy, ultraviolet-visible spectroscopy, infrared spectroscopy, Raman spectroscopy, and transmission electron microscopy to determine the electrochemical, optical, structural, and morphological properties of the nanomaterials. The silver, bismuth, and bismuth-silver nanoparticles were shown to have an average particle size of 10–30 nanometers by microscopy. The electrochemical results showed that the bismuth-silver nanoparticles exhibited good electrocatalytic activity that can be harnessed for sensor construction and related applications. The ultraviolet-visible, infrared, and Raman spectroscopy results confirmed the structural properties of the bismuth-silver nanoparticles. In addition, the microscopy and electron diffraction morphological characterization confirmed the nature of the bismuth-silver nanoparticles.  相似文献   

4.
M. Pérez-Ortiz 《Talanta》2010,82(1):398-630
In this work, the electrochemical behavior and the analytical application of atomoxetine, a selective noradrenaline reuptake inhibitor, are studied. Atomoxetine, studied by differential pulse voltammetry and cyclic voltammetry on a glassy carbon electrode, exhibited an anodic response in aqueous media with pH between 1.5 and 7. In non-aqueous medium (acetonitrile), the drug exhibited two irreversible oxidation peaks that are diffusion controlled. From chronocoulometric studies in acetonitrile, it was determined that each oxidation signal involves two and four electrons, respectively. For analytical purposes, a differential pulse voltammetry technique in 0.1 mol L−1 perchloric acid was selected, which exhibited adequate figures of merit. The percent recovery was 96.6 ± 1.2 and the detection and quantitation limits were 6.9 × 10−5 and 1.0 × 10−4 mol L−1, respectively. Also, results indicate that excipients do not interfere with the oxidation signal of atomoxetine, which leads to the conclusion that the developed method is satisfactorily selective for atomoxetine quantification in pharmaceuticals with no prior separation or extraction necessary. Finally, the proposed voltammetric method was successfully applied to both the assay and the uniformity content of atomoxetine in capsules. For comparison, high-performance liquid chromatography analysis was also performed.  相似文献   

5.
Electroreduction of 4-amino-6-methyl-3-thio-1,2,4-triazine-5-one (I), 6-methyl-3-thio-1,2,4-triazine-5-one (II), and 2,4-dimethoxy-6-methyl-1,3,5-triazine (III) in dimethylformamide was investigated. Electrochemical techniques including differential pulse voltammetry (DPV), cyclic voltammetry (CV), chronoamperometry, and coulometry were employed to study the mechanism of the electrode process. From the analysis of the voltammetric and spectroscopic experiments a mechanism was proposed for the electroreduction of thio-triazine and triazine compounds. Compounds I and II having thiol groups exhibited similar redox behavior. Both compounds displayed two cathodic peaks, whereas the third compound (III), with no thiol group, showed only one cathodic peak in the same potential range as the second peak of compounds I and II.The results of this study show that in the former wave, the one electron reduction of thiol led to a dimer (disulfide) species and in the latter, the triazine ring was reduced in a two-electron process. The effects of various physical and electrochemical parameters were studied and the electrochemical behavior of the monomers was reported as a function of these parameters. A completely irreversible behavior was observed from cyclic voltammograms obtained under different conditions. Furthermore, in this study some numerical constants, such as diffusion constant, transfer coefficient, and rate constant of coupled chemical reaction were determined.  相似文献   

6.
The electrochemical solid phase micro-extraction of salicylic acid (SA) at graphite-epoxy-composed solid electrode surface was studied by cyclic voltammetry. SA was oxidized electrochemically in pH 12.0 aqueous solution at 0.70 V (vs. saturated calomel electrode) for 7 s. The oxidized product shows two surface-controlled reversible redox couples with two proton transferred in the pH range of 1.0∼6.0 and one proton transferred in the pH range of 10.0∼13.0 and is extracted on the electrode surface with a kinetic Boltzman function of i p = 3.473–4.499/[1 + e(t − 7.332)/6.123] (χ 2 = 0.00285 μA). The anodic peak current of the extracted specie in differential pulse voltammograms is proportional to the concentration of SA with regression equation of i p = −5.913 + 0.4843 c (R = 0.995, SD = 1.6 μA) in the range of 5.00∼200 μM. The detection limit is 5.00 μM with RSD of 1.59% at 60 μM. The method is sensitive and convenient and was applied to the detection of SA in mouse blood samples with satisfactory results.  相似文献   

7.
A new electrochemical sensor for melamine with 3,4-dihydroxyphenylacetic acid as the recognition element is established. The results of Fourier Transform Infrared (FT-IR) spectra demonstrate that melamine may interact with 3,4-dihydroxyphenylacetic acid to form a complex mainly through the hydrogen-bonding interaction. The electrochemical behavior of 3,4-dihydroxyphenylacetic acid in the presence of melamine was studied. The anodic peak currents of 3,4-dihydroxyphenylacetic acid obtained by differential pulse voltammetry are linear with the logarithm of melamine concentrations in the range from 1.0 × 10−8 to 5.0 × 10−6 M with a linear coefficiency of 0.997. The detection limit is 3.0 × 10−9 M. The proposed method displayed an excellent sensitivity and was successfully applied to the determination of melamine in milk products.  相似文献   

8.
在pH 7的B-R缓冲底液中,应用循环伏安法和微分脉冲法在玻碳电极上对泛昔洛韦与牛血清白蛋白相互作用进行了研究,与相同浓度单独存在于溶液中泛昔洛韦相比,峰电位基本不变,峰电流有所降低,讨论了pH、反应时间、扫速、富集时间、静止时间对二者作用的影响,建立了对牛血清白蛋白浓度的检测方法.计算了泛昔洛韦加入BSA前后转移的质子数和电子数不变,扩散系数变小,推测泛昔洛韦进入BSA的疏水空腔内,使游离药物浓度变小.  相似文献   

9.
Alloxan is a toxic reagent that strongly induces the diabetes by destroying insulin‐producing β‐cells in the pancreas of living organisms. The reduction product of alloxan is dialuric acid, which is responsible for the intracellular generation of ROS to enhance the stress in living cells to cause kidney disease or diabetic nephropathy. Herein, we studied for the first time the electrochemical properties of alloxan on reduced graphene oxide modified glassy carbon electrode (rGO/GCE) in 0.1 M phosphate buffer solution (PBS) at pH 7. The obtained results were compared with graphene oxide modified GCE (GO/GCE) and bare GCE surfaces. The modified rGO/GCE showed well defined redox couple with 10 fold increase in both reduction as well as oxidation peak current for alloxan than that of GO/GCE and bare GCE. Differential pulse voltammetry (DPV) technique shows the linear increase in both oxidation and reduction peak current of alloxan in the range of 30 μM to 3 mM with LOD of 1.2 μM. An amperometric signal of alloxan is also increases with respect to each addition of 50 μM of alloxan on rGO/GCE at constant potential of ?0.05 V. The linear range of alloxan is observed between 50 μM to 750 μM (S/N=3). This kind of rGO/GCE surface is more suitable platform or sensor matrix for estimating unknown concentration of alloxan molecule in the real biological systems.  相似文献   

10.
A simple and reliable method for simultaneous electrochemical determination of ascorbic acid (AA) and dopamine (DA) is presented in this work. It was based on the use of the cationic surfactant cetylpyridinium chloride (CPC) that enables the separation of the oxidation peaks potential of AA and DA. Cyclic voltammetry (CV) as well as pulse differential voltammetry (PDV) were used in order to verify the voltammetric behaviour in micellar media. In the cationic surfactant CPC, a remarkable electrostatic interaction is established with negatively charged AA, as a consequence, the oxidation peak potential shifted toward less positive potential and the peak current increased. On the other hand, the positively charged DA is repelled from the electrode surface and the oxidation peak potential shifts toward more positive potential in comparison to the bare electrode. Therefore, the common overlapped oxidation peaks of AA and DA can be circumventing by using CPC. Parameter that affects the Epa and Ipa such as CPC concentration and pH were studied. Under optimised conditions, the method presented a linear response to AA and DA in the concentration range from 5 to 75 μmol L−1 and 10 to 100 μmol L−1, respectively. The proposed method was successfully applied to the simultaneous determination of AA and DA in dopamine hydrochloride injection (DHI) samples spiked with AA.  相似文献   

11.
A stable electro active thin film of cobalt hexacyanoferrate (CoHCF) was deposited on the surface of an amine adsorbed graphite wax composite electrode using a simple method. Cyclic voltammetric experiments showed two pairs of well defined peaks for this CoHCF modified electrode which exhibited excellent electrocatalytic property for the oxidation of paracetomol at a reduced overpotential of 100 mV and over a concentration range of 3.33 × 10−6 to 1.0 × 10−3 M with a slope of 0.208 μA/μM with good sensitivity. The influence of the supporting electrolyte on peak current and peak potential were also obtained in addition with effects of common interference (e.g., ascorbic acid) on the response of the modified electrode. Various parameters that influence the electrochemical behavior of the modified electrode were optimized by varying scan rates and pH. Electrochemical impedance spectroscopy studies suggested that the electrode reaction of the CoHCF film is mainly controlled by transport of counter ion. The immobilized CoHCF maintained its redox activity showing a surface controlled electrode reaction with the electron transfer rate constant (Ks) of 0.94 s−1 and charge transfer coefficient of 0.42. Hydrodynamic and chronoamperometric studies were done to explore the utility of the modified electrode in dynamic systems. The results of the differential pulse voltammetry (DPV) using the modified electrode was applied for the determination of paracetomol in commercially available tablets. The results obtained reveal that the electrode under study could be used as an effective sensor for online monitoring of paracetomol.  相似文献   

12.
The electrocatalytic oxidation of glutathione (GSH) has been studied at the surface of ferrocene-modified carbon paste electrode (FMCPE). Cyclic voltammetry (CV), double potential step chronoamperometry, and differential pulse voltammetry (DPV) techniques were used to investigate the suitability of incorporation of ferrocene into FMCPE as a mediator for the electrocatalytic oxidation of GSH in buffered aqueous solution. Results showed that pH 7.00 is the most suitable for this purpose. In the optimum condition (pH 7.00), the electrocatalytic ability of about 480 mV can be found and the heterogeneous rate constant of catalytic reaction was calculated as . Also, the diffusion coefficient of glutathione, D, was found to be 3.61 × 10–5 cm2 s−1. The electrocatalytic oxidation peak current of glutathione at the surface of this modified electrode was linearly dependent on the GSH concentration and the linear analytical curves were obtained in the ranges of 3.2 × 10–5 M–1.6 × 10–3 M and 2.2 × 10–6 M–3.5 × 10–3 M with cyclic voltammetry and differential pulse voltammetry methods, respectively. The detection limits (3σ) were determined as 1.8 × 10–5 M and 2.1 × 10–6 M using CV and DPV, respectively. Finally, the electrocatalytic oxidation of GSH at the surface of this modified electrode can be employed as a new method for the voltammetric determination of glutathione in real samples such as human plasma.  相似文献   

13.
Torriero AA  Luco JM  Sereno L  Raba J 《Talanta》2004,62(2):247-254
The electrochemical oxidation of salicylic acid (SA) has been studied on a glassy carbon electrode using cyclic voltammetry and differential pulse voltammetric (DPV) method. SA gives a single irreversible oxidation wave over the wide pH range studied. The irreversibility of the electrode process was verified by different criteria. The mechanism of oxidation is discussed. Using differential pulse voltammetry, SA yielded a well-defined voltammetric response in Britton-Robinson buffer solution, pH 2.37 at 1.088 V (versus Ag/AgCl). The method was linear over the SA concentration range: 1-60 μg ml−1. The method was successfully applied for the analysis of SA as a hydrolysis product, in solid pharmaceutical formulations containing acetylsalicylic acid (ASA).  相似文献   

14.
A modified electrode is fabricated by embedding gold nanoparticles into a layer of electroactive polymer, poly(4-aminothiophenol) (PAT) on the surface of glassy carbon (GC) electrode. Cyclic voltammetry (CV) is performed to deposit PAT and concomitantly deposit Au nanoparticles. Field emission transmission electron microscopic image of the modified electrode, PAT-Aunano-ME, indicates the presence of uniformly distributed Au nanoparticles having the sizes of 8-10 nm. Electrochemical behavior of the PAT-Aunano-ME towards detection of ascorbic acid (AA) and dopamine (DA) is studied using CV. Electrocatalytic determination of DA in the presence of fixed concentration of AA and vice versa, are studied using differential pulse voltammetry (DPV). PAT-Aunano-ME exhibits two well defined anodic peaks at the potential of 75 and 400 mV for the oxidation of AA and DA, respectively with a potential difference of 325 mV. Further, the simultaneous determination of AA and DA is studied by varying the concentration of AA and DA. PAT-Aunano-ME exhibits selectivity and sensitivity for the simultaneous determination of AA and DA without fouling by the oxidation products of AA or DA. PAT and Au nanoparticles provide synergic influence on the accurate electrochemical determination of AA or DA from a mixture having any one of the component (AA or DA) in excess. The practical analytical utilities of the PAT-Aunano-ME are demonstrated by the determination of DA and AA in dopamine hydrochloride injection and human blood serum samples.  相似文献   

15.
Qian Cao  Lixi Zeng  Rui Wang  Yujian He 《Talanta》2009,80(2):484-488
A novel and simple electrochemical method for determination of melamine is developed based on oligonucleotides film modified gold electrodes. The electrochemical probe of ferricyanide was used to investigate the interactions between oligonucleotides and melamine. Results of cyclic voltammetries, differential pulse stripping voltammetries, electrochemical impedance spectrometry and atomic force microscope, proved that melamine might interact with oligonucleotides mainly through electrostatic and hydrogen-bonding interactions. The interactions between oligonucleotides and melamine lead to the increase in the peak currents of ferricyanide, which could be used for electrochemical sensing of melamine. The redox peak currents of ferricyanide were linear with the concentration of melamine in the range from 3.9 × 10−8 to 3.3 × 10−6 M with a linear coefficiency of 0.990. The detection limit was 9.6 × 10−9 M. The proposed electrochemical biosensor is rapid, convenient and low-cost for effective sensing of melamine. Particularly, the proposed method was applied successfully to the determination of melamine in milk products, and the recovery was 95%.  相似文献   

16.
A stable quercetin–thioglycolic acid-modified gold electrode (Qu–TCA/Au) was prepared as a self-assembled monolayer (SAM) and its electrochemical behavior was investigated by electrochemical methods. In 0.05-M phosphate buffer solution (pH 7.0) quercetin exhibits quasi-reversible signals at the Qu–TCA/Au electrode. The stability of the quercetin-modified gold electrode is very good. The quercetin self-assembled monolayer is an effective mediator for the oxidation of dopamine, which was investigated by cyclic voltammetry and differential pulse voltammetry. Ascorbic acid does not interfere with determination of dopamine at an electrode modified with a mixture of quercetin–thioglycolic acid and quercetin–11-mercaptoundecanoic acid. This modification allows dopamine to be determined in the presence of ascorbic acid in the range from 3×10–5 to 3×10–4 M. The detection limit is 1×10–6 M. Scanning electrochemical microscopy (SECM) was employed to study the electrochemical performances of the modified gold electrode indicating different feedback modes at differently modified surfaces.  相似文献   

17.
The polarographic behaviour of 2-nitronaphthalene was investigated by DC tast polarography (DCTP) and differential pulse polarography (DPP), both at a dropping mercury electrode, and differential pulse voltammetry and adsorptive stripping voltammetry, both at a hanging mercury drop electrode. Optimum conditions have been found for the determination of 2-nitronaphthalene by the given methods in the concentration ranges of 2×10–6–1×10–4, 2×10–7–1×10–4, 1×10–8–1×10–4 and 2×10–9–1×10–8 M, respectively. Practical applicability of these techniques was demonstrated by the determination of 2-nitronaphthalene in drinking and river water after its preliminary separation and preconcentration using liquid–liquid and solid-phase extraction with limits of determination of 3×10–10 M (drinking water) and 3×10–9 M (river water).  相似文献   

18.
《Analytical letters》2012,45(4):674-686
The electrochemical reduction behavior of 1,3,5-triazine herbicides, Atraton (AN), Prometon (PN), Secbumeton (SN), and Terbumeton (TN) at mercury electrodes was studied in aqueous Britton Robinson buffer (BR) solutions by using different voltammetric techniques. The nature of the electrode process was examined. Number of electrons involved in the reduction process of all the four compounds was evaluated and a reduction mechanism was proposed. The electrolysis products were separated and identified by IR spectra. For analytical purposes, BR buffer of pH 4.0 was chosen as working medium for all the four analytes. The detection limits were found to be 1.5 × 10?8 mol l?1, 2 × 10?8 mol l?1, 2.8 × 10?8 mol l?1, and 1 × 10?8 mol l?1 for AN, PN, SN, and TN, respectively. A differential pulse voltammetric method was developed for the determination of these compounds in agricultural formulations, water, and soil samples. The interference from the ions and other herbicides were also evaluated.  相似文献   

19.
聚磺胺嘧啶修饰电极伏安法测定对乙酰氨基酚   总被引:1,自引:0,他引:1  
利用循环伏安法制备了聚磺胺嘧啶修饰电极, 研究了对乙酰氨基酚在该修饰电极上的电化学行为. 该电极对对乙酰氨基酚有较强的电催化作用. 在pH 9.0的PBS缓冲溶液中, 用循环伏安法和差分脉冲伏安法在该电极上测定了对乙酰氨基酚, 其线性范围分别为4.0×10-6~3.0×10-4 mol/L和2.0×10-7~1.0×10-5 mol/L, 检出限分别为9.0×10-7 mol/L和8.0×10-8 mol/L.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号