首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A new polyvinylidene difluoride (PVDF) hollow fiber (200 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) was compared with two other polypropylene (PP) hollow fibers (200, 300 μm wall thickness, 1.2 mm internal diameter, 0.2 μm pore size) in the automated hollow fiber liquid-phase microextraction (HF-LPME) of flunitrazepam (FLNZ) in biological samples. With higher porosity and better solvent compatibility, the PVDF hollow fiber showed advantages with faster extraction efficiency and operational accuracy. Parameters of the CTC autosampler program for HF-LPME in plasma and urine samples were carefully investigated to ensure accuracy and reproducibility. Several parameters influencing the efficiency of HF-LPME of FLNZ in plasma and urine samples were optimized, including type of porous hollow fiber, organic solvent, agitation rate, extraction time, salt concentration, organic modifier, and pH. Under optimal conditions, extraction recoveries of FLNZ in plasma and urine samples were 6.5% and 83.5%, respectively, corresponding to the enrichment factor of 13 in plasma matrix and 167 in urine matrix. Excellent sample clean-up was observed and good linearities (r2 = 0.9979 for plasma sample and 0.9995 for urine sample) were obtained in the range of 0.1–1000 ng/mL (plasma sample) and 0.01–1000 ng/mL (urine sample). The limits of detection (S/N = 3) were 0.025 ng/mL in plasma matrix and 0.001 ng/mL in urine matrix by gas chromatography/mass spectrometry/mass spectrometry.  相似文献   

2.
Li Zhu 《Talanta》2010,80(5):1873-159
In this paper, a solid-phase extraction (SPE) method based on mixed hemimicelles of cetyltrimethyl ammonium bromide (CTAB) on silica-coated magnetic nanoparticles (MNPs) is developed for extraction and preconcentration of compounds from the biological samples. We selected rhein and emodin which are the major active anthraquinones of rhubarb as model analytes. A high performance liquid chromatography-fluorescence detection (HPLC/FLD) method was developed for the determination of rhein and emodin in urine and serum samples. The main factors influencing the extraction efficiency including the amount of surfactant, the concentration of MNPs, the shaking time and the desorption ability of organic solvents were investigated and optimized. No interferences were caused by proteins or endogenous compounds in urine and serum samples. Good linearities (r2 > 0.9995) for all calibration curves were obtained, and the limits of detection (LODs) for rhein and emodin were 0.2 and 0.5 ng/mL in urine samples and 7 and 10 ng/mL in serum samples, respectively. Satisfactory recoveries (92.76-109.90% and 97.53-107.72% for rhein and emodin) in the biological matrices were achieved.  相似文献   

3.
Mesoporous TiO2 nanoparticles were synthesized with the hydrothermal method and characterized by powder X-ray diffraction (PXRD) and transmission electron microscope (TEM). Then a superior solid-phase microextraction (SPME) fiber was fabricated by sequentially coating the stainless steel fiber with silicone sealant film and mesoporous TiO2 powder. The developed fiber possessed a homogeneous surface and a long life-span up to 100 times at direct immersing (DI) extraction mode. Under the optimized conditions, the extraction efficiencies of the self-made 17 μm TiO2 fiber for six organochlorine pesticides (OCPs) were higher than those of the two commercial fibers (65 μm PDMS/DVB and 85 μm PA fibers) which were much thicker than the former. As for analytical performance, low detection limits (0.08–0.60 ng L−1) and wide linearity (5–5000 ng L−1) were achieved under the optimal conditions. The repeatabilities (n = 5) for single fiber were between 2.8 and 12.3%, while the reproducibilities (n = 3) of fiber-to-fiber were in the range of 3.7–15.7%. The proposed fiber was successfully applied to the sensitive analysis of OCPs in real water samples and four of the six analytes were detected from the rainwater and the lake water samples.  相似文献   

4.
A high-throughput solid-phase microextraction (SPME) on 96-well plate together with gas chromatography–mass spectrometry (GC–MS) was developed for the determination of some selected pesticides in cucumber samples. Pieces with the length of 1.0 cm of silicon tubing were precisely prepared and then coated on the end part of stainless steel wires. The prepared fibers were positioned in a home-made polytetrafluoroethylene (PTFE)-based constructed ninety-six holes block to have the possibility of simultaneous immersion of the SPME fibers into the center of individual wells. Pesticides such as diazinon, penconazol, tebuconazol, bitertanol, malathion, phosalone and chlorpyrifos-methyl were selected for their highly application in cucumber field. The performances of the SPME fibers, such as intra and inter-fibers reproducibility, were evaluated and the results showed a good similarity in extraction yields. A volume of 1 mL of the aquatic supernatant of the cucumber samples was transferred into the 96-well plate and the array of SPME fibers was applied for the extraction of the selected pesticides. The important parameters influencing the whole extraction process including, organic solvent percent, salt addition, dilution factor, stirring rate and extraction time were optimized. The inter- and intra-day RSD% were found to be less than 15.4%. Limits of detection (LOD) and limits of quantification (LOQ) were below 60 and 180 μg kg−1, respectively. The coefficient of determination was satisfactory (r2 > 0.99) for all the studied analytes. The developed method was successfully applied to the monitoring of several samples gathered from local markets.  相似文献   

5.
A method based on immersed solid-phase microextraction (SPME) and gas chromatography mass spectrometry detection (GC-MS) for the determination of organophosphorous pesticides (OPPs) in aqueous samples was developed. A sol-gel based coating fiber was prepared using 3-(trimethoxysilylpropyl) amine as precursor. The synthesized fiber was prepared in a way to impart polar moiety into the coating network and would be more suitable for extracting polar and semi-polar organic pollutants. Important parameters influencing the extraction process were optimized and an extraction time of 40 min at 30 °C gave maximum peak area, when NaCl (20% w/v) was added to the aqueous sample. The linearity for disulfoton, phorate and sulfotep was in the concentration range of 0.01 to 5 ng mL− 1 and for parathion and O,O,O-triethylthiphosphate was in the range of 0.01 to 50 ng mL− 1. Limits of detection ranged from 1 ng L− 1, for parathion, to 0.05 ng L− 1, for disulfoton using time-scheduled selected ion monitoring (SIM) mode, and the RSD% values were all below 10.5% at the 1 ng mL− 1 level. The developed method was successfully applied to real water samples while the relative recovery percentages obtained for the spiked water samples were from 80 to 115%.  相似文献   

6.
By using ionic liquid as membrane liquid and tri-n-octylphosphine oxide (TOPO) as additive, hollow fiber supported liquid phase microextraction (HF-LPME) was developed for the determination of five sulfonamides in environmental water samples by high-performance liquid chromatography with ultraviolet detection The extraction solvent and the parameters affecting the extraction enrichment factor such as the type and amount of carrier, pH and volume ratio of donor phase and acceptor phase, extraction time, salt-out effect and matrix effect were optimized. Under the optimal extraction conditions (organic liquid membrane phase: [C8MIM][PF6] with 14% TOPO (w/v); donor phase: 4 mL, pH 4.5 KH2PO4 with 2 M Na2SO4; acceptor phase: 25 μL, pH 13 NaOH; extraction time: 8 h), low detection limits (0.1–0.4 μg/L, RSD ≤ 5%) and good linear range (1–2000 ng/mL, R2 ≥ 0.999) were obtained for all the analytes. The presence of humic acid (0–25 mg/L dissolved organic carbon) and bovine serum albumin (0–100 μg/mL) had no significant effect on the extraction efficiency. Good spike recoveries over the range of 82.2–103.2% were obtained when applying the proposed method on five real environmental water samples. These results indicated that this present method was very sensitive and reliable with good repeatabilities and excellent clean-up in water samples. The proposed method confirmed hollow fiber supported ionic liquid membrane based LPME to be robust to monitoring trace levels of sulfadiazine, sulfamerazine, sulfamethazine, sulfadimethoxine and sulfamethoxazole in aqueous samples.  相似文献   

7.
In this paper, a novel graphene (G) based solid-phase microextraction (SPME) fiber was firstly prepared by immobilizing the synthesized G on stainless steel wire as coating. The new fiber possessed a homogeneous, porous and wrinkled surface and showed excellent thermal (over 330 °C), chemical and mechanical stability, and long lifespan (over 250 extractions). The SPME performance of the G-coated fiber was evaluated in detail through extraction of six pyrethroid pesticides. Although the thickness of G-coated fiber was only 6-8 μm, its extraction efficiencies were higher than those of two commercial fibers (PDMS, 100 μm; PDMS/DVB, 65 μm). This high extraction efficiency may be mainly attributed to huge delocalized π-electron system of G, which shows strong π-stacking interaction with pyrethroid pesticide. The G-coated fiber was applied in the gas chromatographic determination of six pyrethroids, and their limits of detection were found to be ranged from 3.69 to 69.4 ng L−1. The reproducibility for each single fiber was evaluated and the relative standard deviations (RSDs) were calculated to be in the range from 1.9% to 6.5%. The repeatability of fiber-to-fiber and batch-to-batch was 4.3-9.2% and 4.1-9.9%. The method developed was successfully applied to three pond water samples, and the recoveries were 83-110% at a spiking of 1 μg L−1.  相似文献   

8.
A simple and efficient liquid-phase microextraction (LPME) in conjunction with gas chromatography-electron capture detector (GC-ECD) has been developed for extraction and determination of 11 organochlorine pesticides (OCPs) from water samples. In this technique a microdrop of 1-dodecanol containing pentachloronitrobenzene (internal standard) is delivered to the surface of an aqueous sample while being agitated by a stirring bar in the bulk of solution. Following completion of extraction, the sample vial was cooled by putting it into an ice bath for 5 min. Finally 2 μL of the drop was injected into the GC for analysis. Factors relevant to the extraction efficiency were studied and optimized. Under the optimized extraction conditions (extraction solvent: 1-dodecanol; extraction temperature: 65 °C; sodium chloride concentration: 0.25 M; microdrop and sample volumes: 8 μL and 20 mL respectively; the stirring rate: 750 rpm and the extraction time: 30 min), figures of merit of the proposed method were evaluated. The detection limits of the method were in the range of 7-19 ng L−1 and the RSD% for analysis of 2 μg L−1 of OCPs was below 7.2% (n = 5). A good linearity (r2 ≥ 0.993) and a relatively broad dynamic linear range (25-2000 ng L−1) were obtained. After 30 min of extraction, preconcentration factors were in the range of 708-1337 for different organochlorine pesticides and the relative errors ranged from −10.1 to 10.9%. Finally the proposed method was successfully utilized for preconcentration and determination of OCPs in different real samples.  相似文献   

9.
An in-syringe ultrasound-assisted emulsification microextraction (USAEME) was developed for the extraction of organophosphorus pesticides (OPPs) from water samples. The OPPs subsequently analyzed gas chromatography (GC) using a microelectron capture detector (μECD). Ultrasound radiation was applied to accelerate the emulsification of μL-level low-density organic solvent in aqueous solutions to enhance the microextraction efficiency of OPPs in the sample preparation for GC-μECD. Parameters affecting the efficiency of USAEME, such as the extraction solvent, solvent volume, pH, salt-addition, and extraction time were thoroughly investigated. Based on experimental results, OPPs were extracted from a 5 mL aqueous sample by the addition of 20 μL toluene as the extraction solvent, followed by ultrasonication for 30 s, and then centrifugation for 3 min at 3200 rpm, offered the best extraction efficiency. Detections were linear in the concentration of 0.01–1 μg/L with detection limits between 1 ng/L and 2 ng/L for OPPs. Enrichment factors ranged from 330 to 699. Three spiked aqueous samples were analyzed, and recovery ranged from 90.1% to 104.7% for farm-field water, and 90.1% to 101.8% for industrial wastewater. The proposed method provides a simple, rapid, sensitive, inexpensive, and eco-friendly process for determining OPPs in water samples.  相似文献   

10.
Ultrasonic solvent extraction of organochlorine pesticides from soil   总被引:1,自引:0,他引:1  
Ultrasonic solvent extraction of the organochlorine pesticides (OCP) including α-, β-, γ- and Δ-hexachlorocyclohexane (HCH), heptachlor, aldrin, o,p′-DDE, dieldrin, p,p′-DDE, p,p′-DDT, methoxychlor, mirex from soil is reported. The extraction procedure was optimized with regard to the solvent type, amount of solvent, duration of sonication and number of extraction steps. Determination of pesticides was carried out by gas chromatography (GC) equipped with electron capture detection (ECD). Twice ultrasonic extraction using 25 mL of a mixture of petroleum ether and acetone (1/1 v/v) for 20 min of sonication showed satisfactory extraction efficiency. Recoveries of pesticides from fortified soil samples are over 88% for three different fortification levels between 15 and 200 μg kg−1, and relative standard deviations of the recoveries are generally below 6%. Real soil samples were analyzed for OCP residues by optimized ultrasonic solvent extraction and shake-flask as well as soxhlet extraction technique. Investigated all extraction methods showed comparable extraction efficiencies. Optimized ultrasonic solvent extraction is the most rapid procedure because the use of time in ultrasonic extraction was considerably reduced compared to shake-flask and soxhlet extraction.  相似文献   

11.
A novel high-throughput device based on 96-micro-solid phase extraction (96-μ-SPE) system was constructed for multiresidue determination of nine pesticides in aquatic samples. The extraction procedure was performed on a commercially available 96-well plate system. The extraction module consisted of 96 pieces of 1 cm × 3 cm of cylindrically shaped stainless steel meshes. The prepared meshes were fixed in a home-made polytetrafluoroethylene-based constructed ninety-six holes block for possible simultaneous immersion of meshes into the center of individual wells. Dodecyl methacrylate and ethylene glycol dimethacrylate was copolymerized as a monolithic polymer and placed in the cylindrically shaped stainless steel meshes as extracting medium. A volume of 1 mL of the aquatic sample was transferred into the 96-well plate and the 96-μ-SPE device was applied for the extraction of the selected pesticides. Subsequently, the extracted analytes were analyzed by gas chromatography–mass spectrometry. Influential parameters such as polymer synthesis conditions, sorbent-to-sorbent reproducibility, ionic strength and extraction time were optimized. Intra and inter-sorbent reproducibility on 96-μ-SPE device were evaluated and results revealed that extraction yields are rather similar. Limits of detection were below 4 μg L−1 and the coefficient of determination was satisfactory (r2 > 0.99) for all the studied analytes. The developed method was successfully applied to the extraction and determination of the selected pesticides in surface water samples.  相似文献   

12.
A simple solvent microextraction method termed vortex-assisted liquid–liquid microextraction (VALLME) coupled with gas chromatography micro electron-capture detector (GC-μECD) has been developed and used for the pesticide residue analysis in water samples. In the VALLME method, aliquots of 30 μL toluene used as extraction solvent were directly injected into a 25 mL volumetric flask containing the water sample. The extraction solvent was dispersed into the water phase under vigorously shaking with the vortex. The parameters affecting the extraction efficiency of the proposed VALLME such as extraction solvent, vortex time, volumes of extraction solvent and salt addition were investigated. Under the optimum condition, enrichment factors (EFs) in a range of 835–1115 and limits of detection below 0.010 μg L−1 were obtained for the determination of target pesticides in water. The calculated calibration curves provide high levels of linearity yielding correlation coefficients (r2) greater than 0.9958 with the concentration level ranged from 0.05 to 2.5 μg L−1. Finally, the proposed method has been successfully applied to the determination of pesticides from real water samples and acceptable recoveries over the range of 72–106.3% were obtained.  相似文献   

13.
Solid-phase microextraction method (SPME) coupled to GC/ECD has been developed and validated for the determination of phthalic acid esters (dimethyl-, diethyl-, di-n-butyl-, butylbenzyl-, di-2-ethylhexyl- and di-n-octyl phthalate) in water samples. Two types of coatings (PDMS, PA), altogether four different kinds of fibers have been investigated. Both parameters affecting the partition of analytes between a fiber coating and aqueous phase (i.e. extraction time, extraction temperature, agitation) and conditions of the thermal desorption in a GC injector were optimized. The final SPME method employing the polyacrylate fiber, extraction time 20 min, heating and stirring of the sample enabled the determination of all six phthalates in water samples. The method showed linear response over four orders of magnitude and the limits of quantification of the method ranged between 0.001 and 0.050 μg l−1. The repeatability expressed as R.S.D. was in the range 4-10% for the spiking level 7 μg l−1 of each analyte. The applicability of the developed SPME method was demonstrated for real water samples.  相似文献   

14.
An ionic liquid mediated sol-gel sorbents for hollow fiber solid-phase microextraction (HF-SPME) was developed for extraction of the pesticides: diazinon, fenitrothion, malathion, fenvalerate, phosalone and tridemorph from human hair and water samples. The analytes were subsequently analyzed with high performance liquid chromatography and diode array detection (HPLC-DAD). Preliminary experiments were carried out in order to study experimental conditions for pesticides' extraction from spiked hair and water samples with HF-SPME using hollow fiber-supported ionic liquid mediated sol-gel sorbent. The sol-gel nanocomposites were reinforced with nanoparticles such as carboxylic functionalized multi-walled carbon nanotubes (COOH-MWCNTs), amino functionalized multi-walled carbon nanotubes (NH(2)-MWCNTs), nano SiO(2), nano TiO(2) and nano MgO comparatively to promote extraction efficiency. In this device, the innovative solid sorbents were developed by the sol-gel method via the reaction of tetraethylorthosilicate (TEOS) with 2-amino-2-hydroxymethyl-propane-1,3-diol (TRIS). In the basic condition (pH 10-11), the gel growth process in the presence of ionic liquid and nanoparticles was initiated. Then, the sol was injected into a polypropylene hollow fiber segment for in situ gelation process. Parameters affecting the efficiency of HF-SPME were thoroughly investigated. Linearity was observed over a range of 0.01-25,000 ng/mL with detection limits between 0.004 and 0.095 ng/mL for the pesticides in the aqueous matrices and 0.003-0.080 ng/mL in the hair matrices. The relative recoveries in the real samples ranged from 82.0% to 94.0% for the pesticides store seller's hair and the work researchers' hair. Results are showing the great possibilities of HF-SPME-HPLC-PDA for analysis of pesticides in biological and environmental samples.  相似文献   

15.
A simple, rapid, and sensitive method for the quantitative monitoring of five sulfonamide antibacterial residues (SAs) in milk was developed by stir bar sorptive extraction (SBSE) coupling to high performance liquid chromatography with diode array detection. The analytes were concentrated by SBSE based on poly (vinylimidazole–divinylbenzene) monolithic material as coating. The extraction procedure was very simple, milk was diluted with water then directly sorptive extraction without elimination of fats and protein in samples was required. To achieve optimum extraction performance for SAs, several parameters, including extraction and desorption time, desorption solvent, ionic strength and pH value of sample matrix were investigated. Under the optimized experimental conditions, low detection limits (S/N = 3) quantification limits (S/N = 10) of the proposed method for the target compounds were achieved within the range of 1.30–7.90 ng/mL and 4.29–26.3 ng/mL from spiked milk, respectively. Good linearities were obtained for SAs with the correlation coefficients (R2) above 0.996. Finally, the proposed method was successfully applied to the determination of SAs compounds in different milk samples and satisfied recoveries of spiked target compounds in real samples were obtained.  相似文献   

16.
An approach to the synthesis of hydroxyl-terminated polymethylphenylsiloxane (PMPS-OH) was proposed and the synthesized PMPS-OH was successfully applied as a precursor to prepare a novel coating for solid-phase microextraction (SPME) via the sol-gel process. The thickness and length of the prepared coating was 70 μm and 1.5 cm, respectively. The extraction efficiency of the PMPS-coated fiber for selected pesticides was higher than that of commercial fibers including 100 μm polydimethylsiloxane (PDMS), 85 μm polyacrylate (PA) and 65 μm polydimethylsiloxane/divinylbenzene (PDMS/DVB). The influence of the extraction process, extraction temperature, extraction time, stirring rate, ionic strength, GC inlet conditions, desorption temperature and time for PMPS-coated fiber application was studied and optimized. Several experiments were carried out to evaluate the analytical characteristics of the proposed SPME-GC-ECD method under optimized conditions. The linearity was from 0.5 to 100 ng g−1 for p,p′-DDE, p,p′-DDD and bifenthrin, and from 2 to 100 ng g−1 for o,p′-DDT, p,p′-DDT, fenpropathrin, beta-cyfluthrin and cyhalothrin. The detection limits of these pesticides were between 0.13 and 1.45 ng g−1. The recovery of the pesticides spiked in various vegetables at 4 ng g−1 ranged from 42.9% to 105.3%, and the relative standard deviations were less than 16.2%.  相似文献   

17.
In this work, a C18 composite solid-phase microextraction (SPME) fiber was prepared with a new method and applied to the analysis of organochlorine pesticides (OCPs) in water sample. A stainless steel wire (o.d. 127 μm) was used as the substrate, and a mixture of the C18 particle (3.5 μm) and the 184 silicone was used as the coating material. During the process of fiber preparation, a section of capillary column was used to fix the mixture onto the stainless steel wire and to ensure the constant of coating thickness. The prepared fiber showed excellent thermal stability and solvent resistance. By coupling with gas chromatography–mass spectrometry (GC–MS), the fiber exhibited wide linearity (2–500 ng L−1) and good sensitivity for the determination of six OCPs in water samples, the OCPs tested included hexachlorobezene, trans-chlordane, cis-chlordane, o,p-DDT, p,p-DDT and mirex. Not only the extraction performance of the newly prepared fiber was more than seven times higher than those of commercial fibers, the limits of detections (LODs) (0.059–0.151 ng L−1) for OCPs achieved under optimized conditions were also lower than those of reported SPME methods. The fiber was successfully applied to the determination of OCPs in real water samples by using developed SPME–GC–MS method.  相似文献   

18.
The convenient fabrications of titania and zirconia hollow fiber with three-dimensional porous structure using polypropylene hollow fibers as templates were developed. And an analytical method based on enrichment and extraction of analytes in the water sample, hollow fiber sorptive microextraction in combined with gas chromatography has been developed for the rapid analysis of N,N-dimethylacetamide (DMA) in the environmental samples. The results showed that zirconia hollow fiber gave higher extraction performance of DMA than that of titania hollow fiber. The method validations, including linearity, limit of detection, limit of qualification, precision, and repeatability were investigated. Linearity for six-point calibration curve was excellent with zirconia hollow fiber having r2 value greater than 0.9993 at the linearity range of 0.001-1.0 mg mL−1. In addition, it seems that hollow fiber sorptive extraction is a promising technique for the enrichment and purification of analytes extracted directly from liquid samples without any other pretreatment.  相似文献   

19.
A method based on solid-phase microextraction and gas chromatography flame photometric detector for the determination of organophosphorus pesticides (OPPs) in food samples was described. Three kinds of vinyl crown ether polar fibers were prepared with sol-gel process and used for the analytes. The new coatings showed higher extraction efficiency and sensitivity for organophosphorus pesticides compared with commercial fibers—85 μm PA and 65 μm PDMS-DVB. Specifically, the benzo-15-crown-5 coating was the most effective for the target analytes. Several factors affecting the performance of SPME such as extraction temperature and time, salt addition, and dilution ratios of samples were optimized. The apparent recoveries of spiked food samples (apple juice, apple and tomato) were determined to be over 55.3% and the limits of detection (LODs) were in the range of 0.003-0.09 ng/g for the OPP studied. The method was applied to determine the concentrations of OPP in real food samples.  相似文献   

20.
Kang X  Pan C  Xu Q  Yao Y  Wang Y  Qi D  Gu Z 《Analytica chimica acta》2007,587(1):75-81
A novel micro-extraction procedure was developed through the use of an electrospun polymer nanofiber as a solid-phase extraction (SPE) sorbent to directly extract trazodone from human plasma. The target compound was then monitored by a high performance liquid chromatography with ultraviolet detector (HPLC-UV) system. Parameters of influencing the extraction efficiency, such as fiber diameter, fiber packing amount, eluted solvent, pH and ionic strength were investigated. Under the optimized conditions, a linear response for trazodone over the range of 20-2000 ng mL−1 was achieved with a γ2 value of 0.9996. The precision of the method was examined with relative standard deviations of 5.7, 2.7, 2.2% corresponding to 50, 200, and 500 ng mL−1, respectively, of trazodone spiked into 0.1 mL of plasma samples. The extraction recoveries of 58.3-75.2% and the relative recoveries of 94.6-105.5% were obtained. The limit of detection (LOD) was determined to be 8 ng mL−1. A 15 min of HPLC gradient was successfully applied to determine trazodone from human plasma. Due to its simplicity, selectivity and sensitivity, the method may be applied to pharmacokinetic and pharmacodynamic studies of drugs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号