首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We developed a new simple and sensitive assay for lysozyme based on gold nanoparticle plasmon resonance light scattering (PRLS) measurement and naked-eye detection using for the first time the lysozyme DNA aptamer as the recognition element. Lysozyme DNA aptamer could stabilize gold nanoparticles (AuNPs) at high ionic strength. Introducing lysozyme to the system easily triggered the aggregation of AuNPs, producing a red-to-blue color change of the solution, red-shifted plasmon absorption, and enhanced plasmon resonance light scattering. The linear range was found to be 0.2∼4 nM for 0.7 nM AuNPs, 0.3∼6 nM for 1.4 nM AuNPs and 0.6∼8 nM for 2.1 nM AuNPs. About 0.1 nM lysozyme can produce an observable enhancement of PRLS signal. For visual detection, 1 nM lysozyme can produce a very distinctive color change. Satisfactory recoveries were obtained for simulated saliva and diluted urine samples, indicating that the method has potential for analyses of clinical samples. The simplicity and high sensitivity that are consistent with the resources and needs of many laboratories makes this method a good choice for routine analysis.  相似文献   

2.
The purpose of this study was to establish a simple, sensitive analytical method for kanamycin (KANA) in human urine. Enhancement of the plasmon resonance light-scattering (PRLS) of gold nanoparticles (AuNPs) by KANA provided the basis for this analytical method. At pH 6.7, KANA induced AuNPs aggregation with enhanced PRLS. The PRLS of the AuNPs–KANA system was further enhanced by addition of urea. The linear range and detection limit for KANA were from 20–800 nmol L−1 and 2 nmol L−1, respectively. Potential interfering substances present in urine had a negligible effect on the determination, thus preliminary sample separations were not necessary. Recovery of KANA from spiked human urine was 94–104%. This simple, sensitive method, using urea to enhance the PRLS of the AuNPs–KANA system, may provide a new approach for determination of compounds rich in OH groups.  相似文献   

3.
A simple, specific and sensitive sequential injection analysis (SIA) system based on non-immunoassay fluorescent detection has been developed for the determination of urinary albumin. The specific binding of the dye Albumin Blue 580 (AB 580) to albumin in urine generated high emission fluorescent signals. The excitation and emission wavelengths were set at 590 and 610 nm, respectively. The analytical range was obtained from 1 to 100 mg L−1, with a detection limit of 0.3 mg L−1 (S/N = 3). The SIA system gave high precision with relative standard deviations (R.S.D.s) of 0.9% and 1.4% when evaluated with 15 and 100 mg L−1 albumin (n = 15), respectively. The method exhibited good reproducibility, as assessed by performing four analytical curves on different days, and intra-run CVs (2.3-3.3%) and inter-run CVs (3.8%) were obtained. Rapid operation was achieved with a sample throughput of 37 h−1. This method was successfully applied to the determination of urinary albumin, and the method was highly correlated with the immunoturbidimetric method (r2 = 0.965; n = 72).  相似文献   

4.
A simple, cost-effective and rapid method for visual detection of arginine based on the citrate-capped gold nanoparticles (AuNPs) aggregation has been developed in this paper. Arginine is the only amino acid with guanidino group, and has the highest isoelectric point (pI) at about 10.8. At pH 9.62, negatively charged citrate-capped AuNPs are well dispersed because of strong electrostatic repulsion. However, positively charged arginine (pH < pI) easily induces negatively charged citrate-capped AuNPs aggregation through electrostatic and hydrogen-bonding interactions, resulting in a red to blue color change of the solution. Using a UV–vis spectrophotometer, the method enables the detection of arginine in the range of 0.08–13.2 μM with a detection limit (3σ/slope) of 16 nM. Particularly, as low as 0.4 μM arginine can be easily detected by the naked eye without using any complicated or expensive instruments. Furthermore, this method can provide satisfactory results for the determination of arginine in arginine injection and compound amino acid injection samples.  相似文献   

5.
Rajesh N. Hegde 《Talanta》2009,79(2):361-368
A simple and rapid electrochemical method was developed for the determination of trace-level trazodone, based on the excellent properties of multi-walled carbon nanotubes (MWCNTs). The MWCNT-modified glassy carbon electrode was constructed and the electrochemical behavior of trazodone was investigated in detail. The cyclic voltammetric results indicate that MWCNT-modified glassy carbon electrode can remarkably enhance electrocatalytic activity towards the oxidation of trazodone in neutral solutions. It leads to a considerable improvement of the anodic peak current for trazodone, and allows the development of a highly sensitive voltammetric sensor for the determination of trazodone. Trazodone could effectively accumulate at this electrode and produce two anodic peaks at about 0.73 V and 1.00 V. The electrocatalytic behavior was further exploited as a sensitive detection scheme for the trazodone determination by differential-pulse voltammetry. Under optimized conditions, the concentration range and detection limit are 0.2-10 μM and 24 nM, respectively for trazodone. The proposed method was successfully applied to trazodone determination in pharmaceutical samples. The analytical performance of this sensor has been evaluated for detection of analyte in urine as a real sample.  相似文献   

6.
We are reporting the highly sensitive determination of hydroxylamine (HA) using 2-mercapto-4-methyl-5-thiazoleacetic acid (TAA) capped fused spherical gold nanoparticles (AuNPs) modified Au electrode. The fused TAA-AuNPs were immobilized on (3-mercaptopropyl)-trimethoxysilane (MPTS) sol-gel film, which was pre-assembled on Au electrode. The immobilization of fused TAA-AuNPs on MPTS sol-gel film was confirmed by UV-vis absorption spectroscopy and atomic force microscopy (AFM). The AFM image showed that the AuNPs retained the fused spherical morphology after immobilized on sol-gel film. The fused TAA-AuNPs on MPTS modified Au electrode were used for the determination of HA in phosphate buffer (PB) solution (pH = 7.2). When compared to bare Au electrode, the fused AuNPs modified electrode not only shifted the oxidation potential of HA towards less positive potential but also enhanced its oxidation peak current. Further, the oxidation of HA was highly stable at fused AuNPs modified electrode. Using amperometric method, determination of 17.5 nM HA was achieved for the first time. Further, the current response of HA increases linearly while increasing its concentration from 17.5 nM to 22 mM and a detection limit was found to be 0.39 nM (S/N = 3). The present modified electrode was also successfully used for the determination of 17.5 nM HA in the presence of 200-fold excess of common interferents such as urea, NO2, NH4+, oxalate, Mn2+, Na+, K+, Mg2+, Ca2+, Ba2+ and Cu2+. The practical application of the present modified electrode was demonstrated by measuring the concentration of HA in ground water samples.  相似文献   

7.
A simple, automatic and practical system for successive determination of albumin and creatinine has been developed by combining sequential injection analysis (SIA) and highly sensitive dye-binding assays. Albumin detection was based on the increase in the absorbance due to complex formation between albumin and eosin Y in acidic media. The absorbance of the complex was monitored at 547 nm. For the creatinine assay, the concentration of creatinine was measured by reaction with alkaline picrate to form a colored product which absorbs at 500 nm. The influences of experimental variables such as effects of pH, reagent concentration, standard/sample volume and interferences were investigated. Under optimal conditions, the automated method showed linearity up to 20 mg L−1 for albumin and 100 mg L−1 for creatinine. The 3σ detection limits were 0.6 and 3.5 mg L−1 for albumin and creatinine, respectively, and the relative standard deviations (n = 10) were 2.49% for 20 mg L−1 albumin, and 3.14% for 20 mg L−1 creatinine. Application of the proposed method to the direct analysis of urinary samples yielded results which agreed with those obtained from the Bradford protein assay and a creatinine enzymatic assay according to a paired t-test. The results obtained should be a step towards developing a fully automated and reliable analytical system for clinical research, which requires direct determination of albumin and creatinine and/or its ratios.  相似文献   

8.
In this paper, a simple and sensitive flow injection analysis (FIA) for the determination of protein with spectroscopic probe was developed. This method was based on the investigation of the interaction of tetrachloride fluorescein (2,4,5,7-tetrachloro-3,6-fluorandiol)-bovine serum albumin (BSA), the coupling reaction of protein with tetrachloride fluorescein (TCFS) which was used as a spectroscopic probe in the presence of β-cyclodextrin (β-CD). The interaction mechanism and the main factors affecting the determination were investigated in details. Under the optimum conditions, the linear range and detection limit were 0.0-28.0 μg mL−1 and 0.76 μg mL−1, respectively. The proposed method has been used to determine albumin in serum albumin with satisfactory results.  相似文献   

9.
Guan H  Zhou P  Zhou X  He Z 《Talanta》2008,77(1):319-324
In recent years, gold nanoparticles and water-soluble fluorescent conjugated polymers are promising materials in terms of their potential applications in a variety of fields, ranging from monitoring DNA hybridization to demonstrate the interaction between proteins, or detecting diseased cell, metal ions and small biomolecular. In order to exploit some new properties of the both, many attempts have been devoted to achieve nanoparticle-polymer composite via incorporating metal nanoparticle into polymer or vice versa, however, only few of them are put into practical application. In the present paper, we utilize the “superquenching” property of AuNPs to polythiophene derivatives for detecting aspartic acid (Asp) and glutamic acid (Glu) in pure water, and discuss the factors accounting for fluorescence quenching and recovery via modulating pH. Thus an exceptionally simple, rapid and sensitive method for detecting Asp and Glu is established with a limit of detection (LOD) is 32 nM for Asp and 57 nM for Glu, the linear range of determination for Asp is 7.5 × 10−8 M to 6 × 10−6 M and 9.0 × 10−8 M to 5 × 10−6 M for Glu. The system is applied to real sample detection and the results are satisfying. Otherwise the composite is very sensitive to pH change of solution, we expect it will be possible to use as pH sensor with wide range in the future.  相似文献   

10.
A sensitive and convenient strategy was developed for label-free assay of adenosine. The strategy adapted the fluorescence resonance energy transfer property between Rhodamine B doped fluorescent silica nanoparticles (SiNPs) and gold nanoparticles (AuNPs) to generate signal. The different affinities of AuNPs toward the unfolded and folded aptamers were employed for the signal transfer in the system. In the presence of adenosine, the split aptamer fragments react with adenosine to form a structured complex. The folded aptamer cannot be adsorbed on the surface of AuNPs, which induces the aggregation of AuNPs under high ionic concentration conditions, and the aggregation of AuNPs leads to the decrease of the quenching ability. Therefore, the fluorescence intensity of Rhodamine B doped fluorescent SiNPs increased along with the concentration of adenosine. Because of the highly specific recognition ability of the aptamer toward adenosine and the strong quenching ability of AuNPs, the proposed strategy demonstrated good selectivity and high sensitivity for the detection of adenosine. Under the optimum conditions in the experiments, a linear range from 98 nM to 100 μM was obtained with a detection limit of 45 nM. As this strategy is convenient, practical and sensitive, it will provide a promising potential for label-free aptamer-based protein detection.  相似文献   

11.
A simple protocol to distinguish enantiomers is extremely intriguing and useful. In this study, we propose a low-cost, facile, sensitive method for visual chiral recognition of enantimers. It is based on the inherent chirality of gold nanoparticles (AuNPs), and the unmodified AuNPs are used as chiral selector for d- and l-Tryptophan (Trp). In the presence of d-Trp, an appreciable red-to-blue color change of AuNPs solution can be observed, whereas no color change is found in the presence of l-Trp. The method can be used to detect d-Trp in the range of 0.2–10 μM, and the limit of detection is 0.1 μM. The chiral assay described in this work is easily readout with the naked eye or using a UV-vis spectrometer. Furthermore, the AuNPs can selectively adsorb d-Trp, and simple centrifugation can allow the precipitation of d-Trp with AuNPs and leave a net excess of the other enantiomer in solution, thus resulting in enantioseparation. In this method, AuNPs do not need any labeling or modifying with chiral molecules. The method is more attractive because of its high sensitivity, low cost, ready availability and simple manipulation.  相似文献   

12.
The authors have developed a straightforward colorimetric method for the rapid determination of lysozyme by using citrate-capped gold nanoparticles (AuNPs) with different particle sizes but without any further surface modification. It is found that AuNPs (15 nm i.d.) undergo aggregation in the presence of lysozyme owing to the high abundance of amino groups in lysozyme. Aggregation leads to a color change of the solution from red over purple to bluish-purple that can be detected visually or by photometry. The limit of detection is 20 nM. We further show that the use of AuNPs with 5 and 15 nm i.d. can improve the sensitivity of the assay compared to using bare AuNPs by adding HAuCl4 and NH2OH to the solution which induces the growth of AuNPs and leads to a smaller interparticle space between AuNPs. This gives rise to differently colored solutions, with color transitions from red to bluish-purple to colorless. The LODs are 0.1 nM for both the 5-nm and 15-nm AuNPs. Compared to the LOD when using a solution of 15-nm AuNPs and without chloroauric acid and hydroxylamine, the LOD (0.1 nM) is lower by a factor of 200. The method is sensitive, specific, and does not require sophisticated equipment. Its feasibility was demonstrated by analyzing lysozyme in samples of egg white.
Graphical abstract We utilized 4 kinds of gold AuNPs with different particle sizes (5, 15, 30, and 50 nm) as colorimetric probes for lysozyme analysis.
  相似文献   

13.
Jian Ma  Min Zhang  Ying Liang 《Talanta》2009,78(1):315-1104
A novel reverse flow injection analysis method coupled with a liquid waveguide capillary cell (LWCC) and spectrophotometric detection for the determination of nanomolar soluble reactive phosphorus in seawater was established. Reagent was injected into the sample stream and detected in a 2-m path length LWCC with detection wavelength set at 710 nm. Experimental parameters, including the reagent concentration, the injection volume, the flow rate and the length of the mixing coil, were optimized based on univariate experimental design. The interference of silicate and arsenate were also investigated. Under optimized conditions, the linearity and the detection limit of the proposed method were found to be 0-165.0 nM and 0.5 nM, which was estimated to be three times the standard deviation of the measurement blanks (n = 9). The relative standard deviations for the determination of 24.7 and 82.5 nM samples were 1.54% and 1.86% (n = 9), respectively. Three seawater samples were analyzed with recoveries ranging from 87.8% to 101.8%. Using the Student's t-test at the 95% confidence level, the results of the proposed method and a segmented flow analyzer reference method for determination of the two samples showed no significant difference. The proposed method had the advantages of being less reagent consuming, more sensitive and with higher throughput (15 h−1).  相似文献   

14.
A new spectrofluorimetric method is proposed for determination of human serum albumin (HSA) with the limit of detection at ng levels. Using doxycycline (DC)-europium (Eu3+) as a fluorescent probe, in a buffer solution of pH 10.2, HSA can remarkably enhance the fluorescence intensity of the DC-Eu3+ complex at 612 nm and the enhanced fluorescence intensity of Eu3+ is proportional to the concentration of HSA. Optimum conditions for the determination of HSA are also investigated. The linear ranges for HSA are 0-9.2 and 9.2-34.5 μg ml−1 with limits of detection of 64 and 115 ng ml−1, respectively. This method is simple, practical and relatively free of interference from coexisting substances, as well as much more sensitive than most of the existing assays. The determination results for human serum and urine samples are identical to those by the AOAO method, with relative standard deviations of five determinations of 1.1-3.6%. By the Rosenthal graphic method, the binding number and association constant of human serum albumin with the probe are 1.8 and 3.71×105 l mol−1, respectively.  相似文献   

15.
In this article, we report a simple method for selective enrichment of aminothiols using Tween 20-capped gold nanoparticles (AuNPs) prior to capillary electrophoresis coupled with laser-induced fluorescence (CE-LIF). Compared to citrate-capped AuNPs, Tween 20-capped AuNPs exhibit the ability to disperse in a highly saline solution and selectively extract aminothiols through the formation of Au–S bonds. After extraction and centrifugation, 1 mM thioglycollic acid (TGA) was utilized to remove aminothiols that attached to the NP surfaces. After a solution of 8.0 mL aminothiols were extracted using 2× AuNPs (200 μL), the extracted aminothiols derivatized with o-phthalaldehyde at pH 12.0 were detected by CE-LIF. As a result, the limits of detection at a signal-to-noise ratio of 3 for homocysteine (HCys), glutathione (GSH), and γ-glutamycysteine (Glu-cys) are 4013.2, 79.8, and 382.8 pM, respectively. The use of this probe provided approximately 11-, 282-, and 21-fold sensitivity improvements for HCys, GSH, and Glu-cys, respectively. A practical analysis of HCys, GSH, and Glu-cys in human urine sample has been accomplished by this present method.  相似文献   

16.
Liqing Wang  Pingang He 《Talanta》2009,79(3):557-154
In this protocol, a fluorescent aptasensor based on magnetic separation for simultaneous detection thrombin and lysozyme was proposed. Firstly, one of the anti-thrombin aptamer and the anti-lysozyme aptamer were individually immobilized onto magnetic nanoparticles, acting as the protein captor. The other anti-thrombin aptamer was labeled with rhodamine B and the anti-lysozyme aptamer was labeled with fluorescein, employing as the protein report. By applying the sandwich detection strategy, the fluorescence response at 515 nm and 578 nm were respectively corresponding to lysozyme and thrombin with high selectivity and sensitivities. The fluorescence intensity was individually linear with the concentration of thrombin and lysozyme in the range of 0.13-4 nM and 0.56-12.3 nM, and the detection limits were 0.06 nM of thrombin and 0.2 nM of lysozyme, respectively. The preliminary study on simultaneous detection of thrombin and lysozyme in real plasma samples was also performed. It shows that the proposed approach has the good character for simultaneous multiple protein detection.  相似文献   

17.
Zhong H  Xu JJ  Chen HY 《Talanta》2005,67(4):749-754
The interactions between proteins and Ponceau 4R (PR) in aqueous solution have been studied by the techniques of resonance light scattering (RLS) spectroscopy, the absorption spectroscopy, zeta potential assay and circular dichroism (CD) spectrum. The dry PR can assemble on the surface of protein via electrostatic and hydrophobic forces to produce an associated compound of protein-PR, this compound can enhance the RLS of protein. Based on this fact, a simple, rapid, and sensitive method has been developed for the determination of proteins at nanogram level by RLS technique with a common spectrofluorimeter. Under optimum conditions, the linear range is 0.10-39.2 μg mL−1 for the determination of both bovine serum albumin (BSA) and human serum albumin (HSA). The detection limits (S/N = 3) are 6.96 ng mL−1 for BSA and 5.71 ng mL−1 for HSA, respectively. There is almost no interference from amino acids, most of the metal ions, and other coexistent substances. The method has been satisfactorily applied to the direct determination of the total protein in human serum.  相似文献   

18.
Due to awfully harmful to the environment and human health, the qualitative and quantitative determinations of naphthols [1-naphthol (1-NAP) and 2-naphthol (2-NAP)] are of great significance and receive great attention. In this paper, gold nanoparticles (AuNPs)/hollow nitrogen-doped carbon microspheres (HNCMS) hybrids (AuNPs/HNCMS) were prepared and functionalized with thiolated-β-cyclodextrin (HS-β-CD) for the first time, and then applied successfully in sensitive and simultaneous electrochemical detection of naphthols. The results show that the oxidation peak currents of naphthols obtained on the HS-β-CD/AuNPs/HNCMS modified glassy carbon (GC) electrode are much higher than that on the AuNPs/HNCMS/GC, HNCMS/GC and bare GC electrodes. Additionally, compared with other electrochemical sensors developed previously, the proposed electrode results in improved detection limits of about four times for 1-NAP (1.0 nM) and two orders of magnitude for 2-NAP (1.2 nM). The linear response ranges of both 1-NAP and 2-NAP are 2–150 nM.  相似文献   

19.
A simple and fast immunoaffinity method is proposed for the determination of gliadins for the first time using gold nanoparticles (AuNPs) as labels. The tracer used consists in a gliadin-AuNP conjugate prepared by the adsorption of gliadins onto the nanoparticle surface. Two AuNP sizes with diameters of 10 nm and 20 nm were assayed to compare the behaviour of the corresponding tracer in the assay. The method relies on the injection in a commercial Protein G column of a preincubated mixture containing gliadins, polyclonal anti-gliadin antibodies, and the gliadin-AuNP tracer. This approach allows the separation of free and bound tracer fractions without any additional elution step, and the direct measurement of the resonance light scattering intensity of the free tracer through the peak height of the immunochromatogram, which is proportional to the analyte concentration. The immunocolumn can be used up to 25 times without eluting and it can be regenerated for at least 20 times. The dynamic ranges of the calibration graphs and the detection limits are 0.5-15.0 and 1.5-15.0 μg mL−1 gliadins, and 0.2 μg mL−1 and 0.8 μg mL−1 gliadins, using 20-nm and 10-nm Au-NPs as labels, respectively. The precision, expressed as relative standard deviation, ranges between 2.7% and 2.9% using 20-nm AuNPs and 4% and 6.1% for 10-nm AuNPs. The method has been applied to the determination of the prolamin fraction in beer samples, obtaining recovery values in the range 71.2% and 101.7%.  相似文献   

20.
A highly sensitive competitive enzyme immunoassay (EIA) has been developed and validated for the determination of the plasma level of 2′-deoxycytidine (dCyd), the potential prognostic marker for breast cancer chemotherapy. This assay employed a monoclonal antibody that recognizes dCyd with a high specificity, and 5′-succinyl-dCyd (5′sdCyd) conjugate of bovine serum albumin (5′sdCyd-BSA) immobilized onto microplate wells as a solid phase. The assay involved a competitive binding reaction between dCyd, in plasma sample, and the immobilized 5′sdCyd-BSA for the binding sites of the anti-dCyd antibody. The bound antibody was quantified with horseradish peroxidase-labeled anti-immunoglobulin second antibody and 3,3′,5,5′-tetramethylbenzidine as a peroxidase substrate. The concentration of dCyd in the sample was quantified by its ability to inhibit the binding of the antibody to the immobilized 5′sdCyd-BSA and subsequently the color formation in the assay. The assay limit of detection was 8 nM and the effective working range at relative standard deviations (R.S.D.s) of ≤10% was 20-800 nM. No cross-reactivity from the structurally related nucleobases, nucleosides, and nucleotides was observed in the proposed assay. Mean analytical recovery of added dCyd was 98-100 ± 3.2-8.2%. The precision of the assay was satisfactory; R.S.D. was 3.4-4.2 and 4.3-8.9% for intra- and inter-assay precision, respectively. The proposed EIA was compared favorably with HPLC method in its ability to accurately measure dCyd spiked into plasma samples. The analytical procedure is convenient, and one can analyze 200 samples per working day, facilitating the processing of large-number batch of samples. The proposed EIA is expected to contribute in further evaluation of dCyd as a prognostic marker for breast cancer chemotherapy and elucidation of the role of dCyd in various biological and biochemical systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号