首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The paper presents a method to estimate the Statistically Equivalent Periodic Unit Cell (SEPUC) corresponding to a masonry with quasi-periodic texture. The identification of the texture and the constituent phases (unit blocks and mortar joints) is achieved by means of digital image processing techniques applied to color image of the masonry wall. A statistical analysis of geometrical parameters (width and height of blocks, thickness and length of mortar joints) allows to estimate their probability distribution and to identify the typology of the texture. Subsequently a Monte Carlo analysis is performed using several tentative SEPUCs generated with different dimensions of blocks and joints according to the estimated distributions. A criterion was eventually proposed to identify, among the numerically generated ones, the SEPUC which is more suitable to model the behavior of masonry wall. The SEPUC is analyzed with techniques available for periodic texture, applying periodic boundary conditions, in order to estimate the equivalent elastic stiffness. The proposed method is validated comparing the results in the elastic range obtained with SEPUC and those obtained imposing essential and natural boundary conditions on the original texture.  相似文献   

2.
This paper deals with the evaluation of the strength domain for non-periodic masonry using a random media micromechanical approach. The generalized plane state formulation is used in order to more accurately describe the masonry behavior and failure criteria proposed in literature. Considering the masonry as a heterogeneous material with random microstructure, the elastic characteristics of the homogenized continuum and the strength domain are evaluated by using the hierarchy theory related to partitions with increasing dimensions through the application of natural and essential boundary conditions with proportionally growing values. An overall failure criterion based on the mean stress state of each phase is introduced. The proposed procedure is validated by comparison with the experimental results obtained with periodic masonry subjected to biaxial stress states recovering the main failure mechanisms. Then the approach is applied to an actual non-periodic masonry introducing peculiar algorithms in order to evaluate strength surfaces and to verify the convergence of the domains obtained through the application of natural and essential boundary conditions with the increasing size of portion dimensions at the mesoscale level.  相似文献   

3.
This paper concerns the dynamics induced by the ideally elastic normal impact of a linearly elastic pseudo-rigid sphere on a rigid, stationary foundation. An impact map is derived and studied by numerical and analytical means. Periodic, quasi-periodic, and chaotic response is observed consistently with the symplectic nature of the map.  相似文献   

4.
The failure criterion for v-notched specimens developed for mixed-mode loadings by Yosibash et al. [Yosibash, Z., Priel, E., Leguillon, D., 2006. A failure criterion for brittle elastic materials under mixed mode loading. Int. J. Fract. 141(1), 289–310.] is generalised in order to consider the influence of the shear stresses and the mode-dependence of the toughness. This is demonstrated to be important in some cases with adhesive joints under complex loadings for instance. The original criterion assumes that an abrupt onset of a crack with a finite extension occurs when two conditions are fulfilled simultaneously: first the normal traction all along the presupposed crack path reaches a critical value, and second the onset is energetically allowed. The influence of the shear stresses is now considered through a mixed law involving critical shear and tensile stresses as well as the mode-dependent toughness introducing a new equivalent SIF. This extended criterion is applied to the simulation of an Arcan test on v-notched compact tension shear (CTS) specimens made of two parts bonded together along the geometric plane of symmetry of the specimen. The competition between two modes of failure is studied: crack initiation along the weak joint which may constitute a privileged fracture surface and initiation in the homogeneous material at an optimum angle that minimizes the critical load to failure.  相似文献   

5.
纤维增强韧性基体界面力学行为   总被引:4,自引:1,他引:3  
分析了纤维增强韧性基体的界面力学行为及其失效机理.按剪滞理论和应变硬化规律研究微复合材料的弹塑性变形和应力状态.讨论了幂硬化和线性硬化基体的弹塑性变形和界面应力分布,并给出纤维应力和位移的表达式.按最大剪应力强度理论建立了纤维/基体界面失效准则,推导出弹塑性界面失效的平均剪应力随纤维埋入长度的变化关系.  相似文献   

6.
The fundamental problem of elastic–plastic normally loaded contact between a deformable sphere and a rigid flat is analyzed under perfect slip and full stick conditions for a wide range of the sphere mechanical properties. The effect of these properties on failure inception is investigated by finding the critical interference and normal loading as well as the location of the first plastic yield or brittle failure. The analysis is based on the analytical Hertz solution under frictionless slip condition and on a numerical solution under stick condition. The failure inception is determined by using either the von Mises criterion of plastic yield or the maximum tensile stress criterion of brittle failure. For small values of the Poisson’s ratio the behavior in stick, when high tangential stresses prevail in the contact interface, is much different than in slip. For high values of the Poisson’s ratio the tangential stresses under stick condition are low and the behavior of the failure inception in stick and slip is similar.  相似文献   

7.
Thermoelastic problem for a composite solid with initial stresses is considered on the basis of the asymptotic homogenization method. The homogenized model is constructed by means of the two-scale asymptotic homogenization techniques. The major result of a present paper is that the effective (homogenized) thermoelastic characteristics of the composite material depend not only on local distributions of all types of material characteristics: local elastic properties, local thermoelastic properties, but also on local initial stresses. Therefore it is shown that for the inhomogeneous (composite) material local initial stresses contribute towards values of the effective characteristics of the material. This kind of interaction is not possible for the homogeneous materials. From the mathematical viewpoint, the asymptotic homogenization procedure is equivalent to the computation of G-limit of the corresponding operator. And the above noted phenomenon is based on the fact that in the considering case the G-limit of a sum is not equal to the sum of G-limits. The developed general homogenized model is illustrated in the particular case of the small initial stresses, which is common for the practical mechanical problems. The explicit formulas for the effective thermoelastic characteristics and numerical results are obtained for a laminated composite solid with the initial stresses.  相似文献   

8.
Effect of microstructure on fracture of brittle materials: Unified approach   总被引:1,自引:0,他引:1  
A theoretical approach to the fracture of brittle solids based on crack opening displacement and energy rate criterion is presented. The approach allows for the prediction of elastic (Young’s modulus) and fracture (fracture strength and thermal shock) response of a brittle material containing spherical pores and polycrystalline solids containing anisotropic residual stresses.  相似文献   

9.
This Note presents criteria on the artificial compliance due to intrinsic cohesive zone models. A homogenized model is proposed for a collection of cohesive zones embedded between each mesh of a finite element-type discretization (cohesive-volumetric approach). The overall elastic behavior of this cohesive-volumetric medium is obtained as a function of the local properties and the mesh size. For an isotropic discretization, a criterion on the cohesive stiffnesses is derived: the additional compliance inherent to intrinsic cohesive zone models is bounded by lower value.  相似文献   

10.
The problem of the homogenization of a plane elastic arch is studied by means of the energy method. Periodic quantities are the stiffness EA and the bending stiffness EI. Effective (homogenized) quantities are derived and correctors are introduced. An example of the determination of effective quantities is also presented.  相似文献   

11.
连续介质力学中,各向同性材料的力学理论已基本成熟,即,对任何一个各向同性材料的力学问题,人们几乎总能从现有理论中找到有效解决方案,但对各向异性材料暨复合材料而言,只有线弹性理论才基本成熟,复合材料的塑性变形、破坏和强度等问题,都还缺少成熟分析方法。根本原因是,现有理论只能得到纤维和基体中的均值应力,复合材料的塑性、破坏和强度分析,都必须基于基体的真实应力。本文对作者创建和发展的基体真实应力理论进行了综述介绍,并简要指出了真实应力理论在复合材料破坏和强度分析中所起的作用。  相似文献   

12.
The initial yield surface of 2D lattice materials is investigated under biaxial loading using finite element analyses as well as by analytical means. The sensitivity of initial yield surface to the dominant deformation mode is explored by using both low- and high-connectivity topologies whose dominant deformation mode is either local bending or strut stretching, respectively. The effect of microstructural irregularity on the initial yield surface is also examined for both topologies. A pressure-dependent anisotropic yield criterion, which is based on total elastic strain energy density, is proposed for 2D lattice structures, which can be easily extended for application to 3D cellular solids. Proposed criterion uses elastic constants and yield strengths under uniaxial loading, and does not rely on any arbitrary parameter. The analytical framework developed allows the introduction of new scalar measures of characteristic stresses and strains that are capable of representing the elastic response of anisotropic materials with a single elastic master line under multiaxial loading.  相似文献   

13.
In this paper we present the homogenization of a periodic multilayered pressurized tube made of very dissimilar elastoplastic materials. We focus on some aspects of technological importance, such as the effective properties, the behavior of the homogenized displacements and stresses, the discontinuities of hoop and longitudinal stresses, the homogenization-induced anisotropy. We conclude that the problem needs to be reformulated in order to be stable by homogenization and we define the effective elastic and incremental stress corrector matrices for the incremental stress–total strain matrix law. Finally, we present the numerical simulation for both the non-homogeneous and the homogenized material and two numerical examples confirming the theoretical results.  相似文献   

14.
15.
为了明确岩石破坏的能量演化特性,结合单轴实验和颗粒流程序获得花岗岩的细观力学参数,进行不同应力状态的花岗岩实验,研究不同围压下花岗岩破坏过程的能量演化机理并推导能量屈服准则。获得以下主要结论:花岗岩破坏过程中低围压下内部损伤出现较早而高围压较晚,表明低围压花岗岩内部损伤是渐进发展过程,而高围压下内部损伤一旦出现便快速发展破坏;高围压花岗岩峰值前一定应变范围弹性应变能基本保持不变,吸收的能量全部转化为耗散能,表明高围压破坏时花岗岩内部损伤程度严重;弹性应变能经历不断积累并达到弹性储能极限而后减小的变化过程,而弹性储能极限与围压之间存在线性变化规律,因此高围压下岩体开挖卸荷时极易诱发大量弹性应变能的急剧释放,引起围岩失稳甚至发生岩爆;花岗岩峰值破坏时的能量比与围压无关,为一定值;基于能量原理导出了能量屈服准则,该准则包含岩性参数和所有主应力,能够综合反映岩石破坏影响因素。  相似文献   

16.
In this paper, a total criterion on elastic and fatigue failure in complex stress, that is, octahedral stress strength theory on dynamic and static states on the basis of studying modern and classic strength theories. At the same time, an analysis of an independent and fairly comprehensive theoretical system is set up. It gives generalized failure factor by 36 materials and computative theory of the 11 states of complex stresses on a point, and derives the operator equation on generalized allowable strength and a computative method for a total equation can be applied to dynamic and static states. It is illustrated that the method has a good exactness through computation of eight examples of engineering. Therefore, the author suggests applying it to engineering widely.  相似文献   

17.
In this paper, we present the homogenization of an anisotropic hollow layered tube with discontinuous elastic coefficients. We focus on some aspects of technological importance, such as the effective coefficients of anisotropic materials, the behavior of the homogenized displacements and stresses, the discontinuities of in-plane shear, hoop and longitudinal stresses, the homogenization-induced anisotropy in the isotropic case. We conclude that the problem of cylindrically anisotropic tubes under extension, torsion, shearing and pressuring is stable by homogenization and we define the effective tensor of the material elastic coefficients. Some numerical examples confirm the theoretical results.  相似文献   

18.
An elastic–plastic material model for the out-of-plane mechanical behaviour of paper is presented. This model enables simulation the elastic–plastic behaviour under high compressive loads in the through-thickness direction (ZD). Paper does not exhibit a sharp transition from elastic to elastic–plastic behaviour. This makes it advantageous to define critical stress states based on failure stresses rather than yield stresses. Moreover, the failure stress in out-of-plane shear is strongly affected by previous plastic through-thickness compression. To cover these two features, a model based on the idea of a bounding surface that grows in size with plastic compression is proposed. Here, both the bounding and the yield surfaces are suggested as parabolas in stress space. While the bounding surface is open for compressive loads, the yield surface is bordered by the maximum applied through-thickness compression.  相似文献   

19.
基于Melan经典的安定理论和von Mises屈服准则,建立了塑性应变强化条件下结构安定的数学模型,根据与时间无关的应力场的特性,对结构中与时间无关的应力场进行了合理的数学变换,将其与载荷变化系数联系起来,推导出与其对应的结构安定极限范围的表达式,给出塑性应变强化模型安定性存在的简化条件.该结论有利于简化应变强化条件下结构的安定分析.  相似文献   

20.
Our traditional view of void nucleation is associated with interface debonding at second-phase particles. However, under extreme dynamic loading conditions second-phase particles may not necessarily be the dominant source of void nucleation sites. A few key experimental observations of laser spall surfaces support this assertion. Here, we describe an alternative mechanism to the traditional view, namely shock-induced vacancy generation and clustering followed by nanovoid growth mediated by dislocation emission. This mechanism only becomes active at very large stresses. It is therefore desirable to establish a closed-form criterion for the macroscopic stress required to activate dislocation emission in porous materials. Following an approach similar to Lubarda and co-workers, we derive the desired criterion by making use of stability arguments applied to the analytic solutions for the elastic interactions of dislocations and voids. Our analysis significantly extends that of Lubarda and co-workers by accounting for a more general stress state, finite porosity, surface tension, as well as temperature and pressure dependence. The resulting simple stress-based criterion is validated against a number of molecular dynamics simulations with favorable agreement.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号