首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular dynamics simulation is applied to investigate the effects of checker surface roughness geometry on the flow of liquid argon through nanochannels that the roughness is implemented on the lower channel wall. The Lennard-Jones potential is used to model the interactions between particles and periodic boundary condition is applied in the flow direction. Density and velocity profiles across the channel are investigated for channel that the lower surface is decorated with the checker surface roughness elements. Result show that as the surface attraction energy or the roughness height increase the density layering in the near the wall is enhanced by higher values or secondary layering phenomena.  相似文献   

2.
Numerical simulation of Poiseuille flow of liquid Argon in a rough nano-channel using the non-equilibrium molecular dynamics simulation is performed. Density and velocity profiles across the channel are investigated in which roughness is implemented only on the lower wall. The Lennard–Jones potential is used to model the interactions between all particles. The effects of surface roughness geometry, gap between roughness elements (or roughness periodicity), surface roughness height and surface attraction energy on the behavior of the flow undergoing Poiseuille flow are presented. Results show that surface shape and roughness height have a decisive role on the flow behaviors. In fact, by increasing the roughness ratio (height to base ratio), the slip velocity and the maximum velocity in the channel cross section are reduced, and the density fluctuations near the wall increases. Results also show that the maximum density near the wall for a rough surface is less than a smooth wall. Moreover, the simulation results show that the effect of triangle roughness surface on the flow behavior is more than the cylindrical ones.  相似文献   

3.
A numerical investigation is performed on the electroosmotic flow (EOF) in a surface-modulated microchannel to induce enhanced solute mixing. The channel wall is modulated by placing surface-mounted obstacles of trigonometric shape along which the surface potential is considered to be different from the surface potential of the homogeneous part of the wall. The characteristics of the electrokinetic flow are governed by the Laplace equation for the distribution of external electric potential; the Poisson equation for the distribution of induced electric potential; the Nernst–Planck equations for the distribution of ions; and the Navier–Stokes equations for fluid flow simultaneously. These nonlinear coupled set of governing equations are solved numerically by a control volume method over the staggered system. The influence of the geometric modulation of the surface, surface potential heterogeneity and the bulk ionic concentration on the EOF is analyzed. Vortical flow develops near a surface modulation, and it becomes stronger when the surface potential of the modulated region is in opposite sign to the surface potential of the homogeneous part of the channel walls. Vortical flow also depends on the Debye length when the Debye length is in the order of the channel height. Pressure drop along the channel length is higher for a ribbed wall channel compared to the grooved wall case. The pressure drop decreases with the increase in the amplitude for a grooved channel, but increases for a ribbed channel. The mixing index is quantified through the standard deviation of the solute distribution. Our results show that mixing index is higher for the ribbed channel compared to the grooved channel with heterogeneous surface potential. The increase in potential heterogeneity in the modulated region also increases the mixing index in both grooved and ribbed channels. However, the mixing performance, which is the ratio of the mixing index to pressure drop, reduces with the rise in the surface potential heterogeneity.  相似文献   

4.
The micro Poiseuille flow for liquid argon flowing in a nanoscale channel formed by two solid walls was studied in the present paper. The solid wall material was selected as platinum, which has well established interaction potential. We consider the intermolecular force not only among the liquid argon molecules, but also between the liquid argon atoms and the solid wall particles, therefore three regions, i.e. the liquid argon computation domain, the top and bottom solid wall regions are included for the force interaction. The present MD (Molecular Dynamics) simulation was performed without any assumptions at the wall surface. The objective of the study is to find how the flow and the slip boundaries at the wall surface are affected by the applied gravity force, or the shear rate. The MD simulations are performed in a nondimensional unit system, with the periodic boundary conditions applied except in the channel height direction. Once the steady state is reached, the macroscopic parameters are evaluated using the statistical mechanics approach. For all the cases tested numerically in the present paper, slip boundaries occur, and such slip velocity at the stationary wall surface increases with increasing the applied gravity force, or the shear rate. The slip length, which is defined as the distance that the liquid particles shall travel beyond the wall surfaces to reach the same velocity as the wall surface, sharply decreases at small shear rate, then slightly decreases with increasing the applied shear rate. We observe that the liquid viscosity remains nearly constant at small shear rates, and the Newtonian flow occurs. However, with increasing the shear rate, the viscosity increases and the non-Newtonian flow appears.  相似文献   

5.
A numerical study is conducted on the effect of sidewall heating in the pressure-driven laminar flow of an incompressible viscous fluid through a rectangular channel that is subjected to a spanwise rotation. The time-dependent Navier-Stokes equations are solved along with the conservation equations for energy and mass by a finite-difference technique. The effect of weak to moderate sidewall heating on the overall flow structure at different rotation rates is studied. It is observed that for weak sidewall heating, the secondary flow structure is quite similar to the corresponding isothermal case. However, when the sidewall heating is moderate, various types of secondary flow fields are found to occur depending on the magnitude of the rotation. The influence of rotational speed on the net heat transport for different levels of sidewall heating is also studied. It is found that when the sidewall heating is weak, the basic secondary flow structure for the non-rotating case is of a unicellular form and an increase in the rotation speed leads to an increase in the net heat transfer due mainly to the rotationally driven transport of fluid from the high temperature to the low temperature region. On the other hand, when the sidewall heating is moderate so that the basic secondary flow structure for the non-rotating case has a multicellular configuration, an increase in the rotation speed leads to a decrease in the heat transport due to the weakening of the shear layer near the hot wall.  相似文献   

6.
A field-modulated electroosmotic flow (FMEOF) in a microchannel can be obtained by applying modulating electric fields in a direction perpendicular to the channel wall. Micro-vortexes are generated around the electrodes along with an EOF due to the surface charge on the modulated wall. When polarizable particles are suspended near the electrodes, they experience dielectrophoretic forces due to a non-uniform electric field. In this paper, micro-vortexes and dielectrophoretic forces are combined to achieve separation and trap different sized particles in a continuous flow. Numerical results indicate that by adjusting the driving electric field parallel to the channel wall and the modulating electric field, the ratio of dielectrophoretic and hydrodynamic forces can be altered. One type of particles can be trapped by micro-vortexes (negative dielectrophoresis (DEP)), and the other particles are transported to the downstream so that the particles are separated. The influence of the electrode length and the channel height on the trapping rate is investigated.  相似文献   

7.
An analysis is performed to study the unsteady combined forced and free convection flow (mixed convection flow) of a viscous incompressible electrically conducting fluid in the vicinity of an axisymmetric stagnation point adjacent to a heated vertical surface. The unsteadiness in the flow and temperature fields is due to the free stream velocity, which varies arbitrarily with time. Both constant wall temperature and constant heat flux conditions are considered in this analysis. By using suitable transformations, the Navier–Stokes and energy equations with four independent variables (x, y, z, t) are reduced to a system of partial differential equations with two independent variables (, ). These transformations also uncouple the momentum and energy equations resulting in a primary axisymmetric flow, in an energy equation dependent on the primary flow and in a buoyancy-induced secondary flow dependent on both primary flow and energy. The resulting system of partial differential equations has been solved numerically by using both implicit finite-difference scheme and differential-difference method. An interesting result is that for a decelerating free stream velocity, flow reversal occurs in the primary flow after certain instant of time and the magnetic field delays or prevents the flow reversal. The surface heat transfer and the surface shear stress in the primary flow increase with the magnetic field, but the surface shear stress in the buoyancy-induced secondary flow decreases. Further the heat transfer increases with the Prandtl number, but the surface shear stress in the secondary flow decreases.  相似文献   

8.
We performed direct simulations of channel flow subjected to rotation about a spanwise axis, comparing cases with smooth and rough walls. The destabilizing effect of roughness counteracts the stabilizing effect of rotation on the cyclonic (stable) side. When the surface is rough the Reynolds stresses remain significant at all rotation rates considered, even those that results in a quasi-laminar state when the wall is smooth. The wake fluctuations result in significant dispersive stresses, which give an important contribution to the generation of turbulence on the stable side, mainly through added production of shear stresses. The dispersive stresses are mostly associated with the channeling of the flow between roughness elements.  相似文献   

9.
The flow of a second-order fluid with a free surface between two coaxially mounted cylinders of finite length, the inner one of which is rotating, is being studied. In the case of slow flow and small shear rates the flow can be divided into a primary flow in the plane perpendicular to the axis of rotation and a secondary flow in the meridional plane. These flow components are numerically calculated and the results are compared with the analytical results for the semi-infinite cylinder approximation. The influence of the finiteness of the cylinders (end effect) upon the free surface deformation is analysed. The numerical results for the secondary flow are compared with results obtained by flow visualisation.  相似文献   

10.
Particle image velocimetry experiments have been carried out to obtain visualizations and measurements of the main and secondary flow fields in a square channel with a sharp “U” turn. Both the main and the secondary flow fields have been used to perform a 3D reconstruction of the mean flow and vortical fields in the turn region and in the outlet duct. In order to study the influence of the rotation, tests both in stationary (absence of rotation, Re = 20,000) and in rotating (Re = 20,000 and Ro = 0.3) conditions have been performed. The results show that the Coriolis and centrifugal forces, caused by the rotation, yield strong modifications to the symmetrical flow and vortical fields that are generated, in the static case, only by the abrupt inversion of the flow direction.  相似文献   

11.
Two dimensional time accurate PIV measurements of the flow between pressure and suction side at different spanwise positions of a rotating channel are presented. The Reynolds and Rotation numbers are representative for the flow in radial impellers of micro gas turbines. Superposition of the 2D results at the different spanwise positions provides a quasi-3D view of the flow and illustrates the impact of Coriolis forces on the 3D flow structure. It is shown that the inlet flow is little affected by rotation. An increasing/decreasing boundary layer thickness is reported on the suction/pressure side wall halfway between the channel inlet and outlet. The turbulence intensity moves away from the suction side wall and remains close to the pressure side wall. The instantaneous measurements at mid-height of the rotating channel reveal the presence of hairpin vortices in the pressure side boundary layer and symmetric vortices near the suction side. Hairpin vortices occur in rotation in the pressure and in the suction side, for the measurement plane close to the channel bottom wall.  相似文献   

12.
A fully-developed turbulent pipe flow is allowed to pass through a rotating pipe section, whose axis of rotation coincides with the pipe axis. At the exit end of the rotating section, the flow passes into a stationary pipe. As a result of the relaxation of surface rotation, the turbulent flow near the pipe wall is affected by extra turbulence production created by the large circumferential shear strain set up by the rapid decrease of the rotational velocity to zero at the wall. However, the flow in the most part of the pipe is absent of this extra turbulence production because the circumferential strain is zero as a result of the solid-body rotation imparted to the flow by the rotating pipe section. The combined effect of these two phenomena on the flow is investigated in detail using hot-wire anemometry techniques. Both mean and turbulence fields are measured, together with the wall shear and the turbulent burst behavior at the wall. A number of experiments at different rotational speeds are carried out. Therefore, the effects of rotation on the behavior of wall shear, turbulent burst at the wall, turbulence production and the near-wall flow can be documented and analysed in detail.  相似文献   

13.
A theoretical analysis has been developed to predict the critical height of the onset of gas entrainment (OGE) during dual and triple discharge from a stratified two-phase region. The two and three discharge branches are mounted on a circular wall, resembling a circular reservoir of a CANDU header–feeder configuration. A point sink model has been developed to predict the critical height and to map the velocities and acceleration flow fields during OGE. The model was verified by comparing the theoretically predicted critical height with the available experimental results. The theoretically predicted critical height is found to be a function of the branch Froude number, the location of the secondary branch with respect to the primary branch, and the angle between the branches. The effect of these variables on the predicted OGE height was investigated and is presented in this paper. Predictions of the critical height were shown to be within 25% of experimental values in both dual and triple discharge.  相似文献   

14.
In the present study, the regionally-averaged heat transfer coefficients and flow temperature distributions were measured in an equilateral triangular channel with three different rib arrangements (α = 45, 90 and 135°). To measure regionally-averaged heat transfer coefficients in the channel, two rows of copper blocks and a single heater were installed on two ribbed walls. The fluid temperature distributions were obtained using a thermocouple-array. The rotation number ranged from 0.0 to 0.1 with a fixed Reynolds number of 10,000. For the 90° ribs, the heat transfer coefficients on the pressure side surface were increased significantly with rotation, while the suction side surface had lower heat transfer coefficients than the stationary channel. For the angled ribs, rib-induced secondary flow dominated the heat transfer characteristics and high heat transfer rates were observed on the regions near the inner wall for the 45° angled ribs and near the leading edge for the 135° angled ribs.  相似文献   

15.
A hybrid of computational and theoretical methods is extended and used to investigate the instabilities of a flexible surface inserted into one wall of an otherwise rigid channel conveying an inviscid flow. The computational aspects of the modelling combine finite-difference and boundary-element methods for structural and fluid elements respectively. The resulting equations are coupled in state-space form to yield an eigenvalue problem for the fluid–structure system. In tandem, the governing equations are solved to yield an analytical solution applicable to inserts of infinite length as an approximation for modes of deformation that are very much shorter than the overall length of the insert. A comprehensive investigation of different types of inserts – elastic plate, damped flexible plate, tensioned membrane and spring-backed flexible plate – is conducted and the effect of the proximity of the upper channel wall on stability characteristics is quantified. Results show that the presence of the upper-channel wall does not significantly modify the solution morphology that characterises the corresponding open-flow configuration, i.e. in the absence of the rigid upper channel wall. However, decreasing the channel height is shown to have a very significant effect on instability-onset flow speeds and flutter frequencies, both of which are reduced. The channel height above which channel-confinement effects are negligible is shown to be of the order of the wavelength of the critical mode at instability onset. For spring-backed flexible plates the wavelength of the critical mode is much shorter than the insert length and we show very good agreement between the predictions of the analytical and the state-space solutions developed in this paper. The small discrepancies that do exist are shown to be caused by an amplitude modulation of the critical mode on an insert of finite length that is unaccounted for in the travelling-wave assumption of the analytical model. Overall, the key contribution of this paper is the quantification of the stability bounds of a fundamental fluid–structure interaction (FSI) system which has hitherto remained largely unexplored.  相似文献   

16.
A direct numerical simulation of low Reynolds number turbulent flows in an open‐channel with sidewalls is presented. Mean flow and turbulence structures are described and compared with both simulated and measured data available from the literature. The simulation results show that secondary flows are generated near the walls and free surface. In particular, at the upper corner of the channel, a small vortex called inner secondary flows is simulated. The results show that the inner secondary flows, counter‐rotating to outer secondary flows away from the sidewall, increase the shear velocity near the free surface. The secondary flows observed in turbulent open‐channel flows are related to the production of Reynolds shear stress. A quadrant analysis shows that sweeps and ejections are dominant in the regions where secondary flows rush in toward the wall and eject from the wall, respectively. A conditional quadrant analysis also reveals that the production of Reynolds shear stress and the secondary flow patterns are determined by the directional tendency of the dominant coherent structures. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

17.
This paper studies the effect of rotation on the turbulent boundary-layer flow in a rotating duct with a square cross section by using hot-wire. The experiments were conducted with the Reynolds numbers, based on the duct's hydraulic diameter (D = 80 mm) equaling 19,000. The rotation numbers (Ro) studied ranged from 0 to 0.362. Hot-wire measurements of the flow field were made at four cross sections of the rotating duct. The effects of rotation on velocity profile, semi-logarithmic mean velocity profile, and wall shear stress are discussed in this paper. Results obtained show the velocity deficit about the leading surface of the rotating duct, created by the secondary flows induced by the Coriolis force, to not increase monotonically with the increase in the Rotation number. Results obtained also show the effects of rotation to penetrate into the logarithm region, and the flow near the leading surface tends to laminarize. In this study, a correction factor is developed for logarithmic law to account for the effects of rotation, which can be used in CFD studies of rotating ducts that use wall functions.  相似文献   

18.
The flow field inside a modern internal cooling channel specifically designed for the trailing edge of gas turbine blades has been experimentally investigated under static and rotating conditions. The passage is characterized by a trapezoidal cross-section of high aspect-ratio and coolant discharge at the blade tip and along the wedge-shaped trailing edge, where seven elongated pedestals are also installed. The tests were performed under engine similar conditions with respect to both Reynolds (Re = 20,000) and Rotation (Ro = 0, 0.23) numbers, while particular care was put in the implementation of proper pressure conditions at the channel exits to allow the comparison between data under static and rotating conditions. The flow velocity was measured by means of 2D and Stereo-PIV techniques applied in the absolute frame of reference. The relative velocity fields were obtained through a pre-processing procedure of the PIV images developed on purpose.Time averaged flow fields inside the stationary and rotating channels are analyzed and compared.A substantial modification of the whole flow behavior due to rotational effects is commented, nevertheless no trace of rotation induced secondary Coriolis vortices has been found because of the progressive flow discharge along the trailing edge. For Ro = 0.23, at the channel inlet the high aspect-ratio of the cross section enhances inviscid flow effects which determine a mass flow redistribution towards the leading edge side. At the trailing edge exits, the distortion of the flow path observed in the channel central portion causes a strong reduction in the dimensions of the 3D separation structures that surround the pedestals.  相似文献   

19.
The aim of the present study is to obtain surface flow visualisation, as well as local and spanwise averaged heat transfer measurements near a 180° sharp turn in a rectangular channel. The channel aspect ratio (width to height ratio) varies from 1 to 5 and the ratio between the width of the channel and that of the partition wall is always equal to 5. Heat transfer measurements are performed by means of the heated-thin-foil technique, which practically corresponds to a constant heat flux boundary condition, and by using infrared (IR) thermography. Two different heating conditions, in particular heating from one side (asymmetrical), or from two sides (symmetrical), are implemented. The convective heat transfer coefficient is evaluated from the measured temperature maps and the local bulk temperature of the flow which is obtained by making a one-dimensional balance along the channel. Results are presented in terms of local, or averaged, Nusselt number which is normalised with the classical Dittus and Boelter correlation. The fluid used during the test is air and the Reynolds number, based on the flow average velocity and channel hydraulic diameter, is varied between 16,000 and 60,000.  相似文献   

20.
Laser Doppler velocimetry (LDV) is used to measure the flow profile of a Newtonian fluid in a cone-and-plate rheometer. The primary and secondary flow patterns are measured in the ideal geometry. The results confirm prior predictions of flow patterns. Flow profiles are also measured in the misaligned geometry in which the cone axis of rotation is tilted slightly off the perpendicular with the plate surface. Numerical predictions of these flow patterns (Dudgeon and Wedgewood, 1994) are also confirmed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号