首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a graph. With each circuit α in G, we can associate a weight wα, A circuit cover of G is a spanning subgraph of G in which every component is a circuit. With every circuit cover of G, we can associate the monomial Παwα, where the product is taken over all components of the cover. The circuit polynomial of G is ΣΠαwα, where the summation is taken over all circuit covers in G. We show that the characteristics polynomial of G is a special case of its circuit polynomial. Previously obtained and also new results for characteristic polynomials are easily deduced. We also derive the circuit polynomials of various classes of graphs.  相似文献   

2.
Let F be a family of connected graphs. With each element α ∈ F, we can associate a weight wα. Let G be a graph. An F-cover of G is a spanning subgraph of G in which every component belongs to F. With every F-cover we can associate a monomial π(C) = Παwα, where the product is taken over all components of the cover. The F-polynomial of G is Σπ(C), where the sum is taken over all F-covers in G. We obtain general results for the complete graph and complete bipartite graphs, and we show that many of the well-known graph polynomials are special cases of more general F-polynomials.  相似文献   

3.
For a given graph G with (0, 1)-adjacency matrix AG, the generalized characteristic polynomial of G is defined to be ?G=?G(λ,t)=det(λI-(AG-tDG)), where I is the identity matrix and DG is the diagonal degree matrix of G. In this paper, we are mainly concerned with the problem of characterizing a given graph G by its generalized characteristic polynomial ?G. We show that graphs with the same generalized characteristic polynomials have the same degree sequence, based on which, a unified approach is proposed to show that some families of graphs are characterized by ?G. We also provide a method for constructing graphs with the same generalized characteristic polynomial, by using GM-switching.  相似文献   

4.
《Discrete Mathematics》2004,274(1-3):173-185
An orientation of a graph is acyclic (totally cyclic) if and only if it is a “positive orientation” of a nowhere-zero integral tension (flow). We unify the notions of tension and flow and introduce the so-called tension-flows so that every orientation of a graph is a positive orientation of a nowhere-zero integral tension-flow. Furthermore, we introduce an (integral) tension-flow polynomial, which generalizes the (integral) tension and (integral) flow polynomials. For every graph G, the tension-flow polynomial FG(k1,k2) on G and the Tutte polynomial TG(k1,k2) on G satisfy FG(k1,k2)⩽TG(k1−1,k2−1). We also characterize the graphs for which the inequality is sharp.  相似文献   

5.
If sk denotes the number of stable sets of cardinality k in graph G, and α(G) is the size of a maximum stable set, then is the independence polynomial of G [I. Gutman, F. Harary, Generalizations of the matching polynomial, Utilitas Math. 24 (1983) 97-106]. A graph G is very well-covered [O. Favaron, Very well-covered graphs, Discrete Math. 42 (1982) 177-187] if it has no isolated vertices, its order equals 2α(G) and it is well-covered, i.e., all its maximal independent sets are of the same size [M.D. Plummer, Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98]. For instance, appending a single pendant edge to each vertex of G yields a very well-covered graph, which we denote by G*. Under certain conditions, any well-covered graph equals G* for some G [A. Finbow, B. Hartnell, R.J. Nowakowski, A characterization of well-covered graphs of girth 5 or greater, J. Combin. Theory Ser B 57 (1993) 44-68].The root of the smallest modulus of the independence polynomial of any graph is real [J.I. Brown, K. Dilcher, R.J. Nowakowski, Roots of independence polynomials of well-covered graphs, J. Algebraic Combin. 11 (2000) 197-210]. The location of the roots of the independence polynomial in the complex plane, and the multiplicity of the root of the smallest modulus are investigated in a number of articles.In this paper we establish formulae connecting the coefficients of I(G;x) and I(G*;x), which allow us to show that the number of roots of I(G;x) is equal to the number of roots of I(G*;x) different from -1, which appears as a root of multiplicity α(G*)-α(G) for I(G*;x). We also prove that the real roots of I(G*;x) are in [-1,-1/2α(G*)), while for a general graph of order n we show that its roots lie in |z|>1/(2n-1).Hoede and Li [Clique polynomials and independent set polynomials of graphs, Discrete Math. 125 (1994) 219-228] posed the problem of finding graphs that can be uniquely defined by their clique polynomials (clique-unique graphs). Stevanovic [Clique polynomials of threshold graphs, Univ. Beograd Publ. Elektrotehn. Fac., Ser. Mat. 8 (1997) 84-87] proved that threshold graphs are clique-unique. Here, we demonstrate that the independence polynomial distinguishes well-covered spiders among well-covered trees.  相似文献   

6.
The chromatic polynomial of a simple graph G with n>0 vertices is a polynomial of degree n, where αk(G) is the number of k-independent partitions of G for all k. The adjoint polynomial of G is defined to be , where is the complement of G. We find explicit formulas for the adjoint polynomials of the bridge–path and bridge–cycle graphs. Consequence, we find the zeros of the adjoint polynomials of several families of graphs.  相似文献   

7.
Let H be a simple graph with n vertices and G be a sequence of n rooted graphs G1,G2,…,Gn. Godsil and McKay [C.D. Godsil, B.D. McKay, A new graph product and its spectrum, Bull. Austral. Math. Soc. 18 (1978) 21-28] defined the rooted product H(G), of H by G by identifying the root vertex of Gi with the ith vertex of H, and determined the characteristic polynomial of H(G). In this paper we prove a general result on the determinants of some special matrices and, as a corollary, determine the characteristic polynomials of adjacency and Laplacian matrices of H(G).Rojo and Soto [O. Rojo, R. Soto, The spectra of the adjacency matrix and Laplacian matrix for some balanced trees, Linear Algebra Appl. 403 (2005) 97-117] computed the characteristic polynomials and the spectrum of adjacency and Laplacian matrices of a class of balanced trees. As an application of our results, we obtain their conclusions by a simple method.  相似文献   

8.
Given a graph Γ and an automorphism group , we define some polynomials which count and classify the orbits of G on various structures on Γ, as counted by the Tutte polynomial, while also specialising to the Tutte polynomial.  相似文献   

9.
The first section surveys recent results on the permanental polynomial of a square matrix A, i.e., per(xIA). The second section concerns the permanental polynomial of the adjacency matrix of a graph. The final section is an introduction to the permanental polynomial of the Laplacian matrix of a graph. An appendix lists some of these latter polynomials.  相似文献   

10.
A maximum independent set of vertices in a graph is a set of pairwise nonadjacent vertices of largest cardinality α. Plummer [Some covering concepts in graphs, J. Combin. Theory 8 (1970) 91-98] defined a graph to be well-covered, if every independent set is contained in a maximum independent set of G. Every well-covered graph G without isolated vertices has a perfect [1,2]-factor FG, i.e. a spanning subgraph such that each component is 1-regular or 2-regular. Here, we characterize all well-covered graphs G satisfying α(G)=α(FG) for some perfect [1,2]-factor FG. This class contains all well-covered graphs G without isolated vertices of order n with α?(n-1)/2, and in particular all very well-covered graphs.  相似文献   

11.
The Kirchhoff Matrix Tree Theorem provides an efficient algorithm for determiningt(G), the number of spanning trees of any graphG, in terms of a determinant. However for many special classes of graphs, one can avoid the evaluation of a determinant, as there are simple, explicit formulas that give the value oft(G). In this work we show that many of these formulas can be simply derived from known properties of Chebyshev polynomials. This is demonstrated for wheels, fans, ladders, Moebius ladders, and squares of cycles. The method is then used to derive a new spanning tree formula for the complete prismR n (m) =K m ×C n . It is shown that $$2^{\left( {\begin{array}{*{20}c} n \\ 2 \\ \end{array} } \right)\left( {1 - \frac{1}{{r - 1}} + o\left( 1 \right)} \right)} $$ whereT n (x) is then th order Chebyshev polynomial of the first kind.  相似文献   

12.
The characteristic polynomial of the adjacency matrix of the subdivision graph G is related to the characteristic polynomials of the adjacency matrices of g and its line graph.  相似文献   

13.
Let G be a finite connected graph. If x and y are vertices of G, one may define a distance function dG on G by letting dG(x, y) be the minimal length of any path between x and y in G (with dG(x, x) = 0). Thus, for example, dG(x, y) = 1 if and only if {x, y} is an edge of G. Furthermore, we define the distance matrix D(G) for G to be the square matrix with rows and columns indexed by the vertex set of G which has dG(x, y) as its (x, y) entry. In this paper we are concerned with properties of D(G) for the case in which G is a tree (i.e., G is acyclic). In particular, we precisely determine the coefficients of the characteristic polynomial of D(G). This determination is made by deriving surprisingly simple expressions for these coefficients as certain fixed linear combinations of the numbers of various subgraphs of G.  相似文献   

14.
In this paper, we find computational formulae for generalized characteristic polynomials of graph bundles. We show that the number of spanning trees in a graph is the partial derivative (at (0,1)) of the generalized characteristic polynomial of the graph. Since the reciprocal of the Bartholdi zeta function of a graph can be derived from the generalized characteristic polynomial of a graph, consequently, the Bartholdi zeta function of a graph bundle can be computed by using our computational formulae.  相似文献   

15.
We show combinatorially that the higher-order matching polynomials of several families of graphs are d-orthogonal polynomials. The matching polynomial of a graph is a generating function for coverings of a graph by disjoint edges; the higher-order matching polynomial corresponds to coverings by paths. Several families of classical orthogonal polynomials—the Chebyshev, Hermite, and Laguerre polynomials—can be interpreted as matching polynomials of paths, cycles, complete graphs, and complete bipartite graphs. The notion of d-orthogonality is a generalization of the usual idea of orthogonality for polynomials and we use sign-reversing involutions to show that the higher-order Chebyshev (first and second kinds), Hermite, and Laguerre polynomials are d-orthogonal. We also investigate the moments and find generating functions of those polynomials.  相似文献   

16.
The independence polynomial of a graph G is the generating function I(G,x)=∑k≥0ikxk, where ik is the number of independent sets of cardinality k in G. We show that the problem of evaluating the independence polynomial of a graph at any fixed non-zero number is intractable, even when restricted to circulants. We provide a formula for the independence polynomial of a certain family of circulants, and its complement. As an application, we derive a formula for the number of chords in an n-tet musical system (one where the ratio of frequencies in a semitone is 21/n) without ‘close’ pitch classes.  相似文献   

17.
Let G be a finite group. To each permutation representation (G, X) of G and class function χ of G we associate the χ-characteristic polynomialgχ(x) of (G, X) which is a polynomial in one variable with complex numbers as coefficients. The coefficients of gχ(x) are investigated in terms of the “exterior powers” of (G, X). If χ is the principal character 1G of G, the coefficients of gχ(x) are non-negative integers; and if furthermore G has odd order, the kth coefficient is the number of orbits of G acting on the subsets of X with k elements. Quadratic and linear relations among the exterior powers of (G, X) have been derived and it is shown how the polynomial gχ(x) can be computed from the cycle index of (G, X).  相似文献   

18.
Let G be a simple graph with adjacency matrix A, and p(x) a polynomial with rational coefficients. If p(A) is the adjacency matrix of a graph, we denote that graph by p(G). We consider the question: Given a graph G, which polynomials p(x) give rise to a graph p(G) and what are those graphs? We give a complete answer if G is a distance-regular graph. We then derive some general relations between the polynomials p(x), the spectrum of A, and the automorphism group of G.  相似文献   

19.
We define two two-variable polynomials for rooted trees and one two-variable polynomial for unrooted trees, all of which are based on the coranknullity formulation of the Tutte polynomial of a graph or matroid. For the rooted polynomials, we show that the polynomial completely determines the rooted tree, i.e., rooted trees T1 and T2 are isomorphic if and only if f(T1) = f(T2). The corresponding question is open in the unrooted case, although we can reconstruct the degree sequence, number of subtrees of size k for all k, and the number of paths of length k for all k from the (unrooted) polynomial. The key difference between these three polynomials and the standard Tutte polynomial is the rank function used; we use pruning and branching ranks to define the polynomials. We also give a subtree expansion of the polynomials and a deletion-contraction recursion they satisfy.  相似文献   

20.
The 0-defect polynomial of a graph is just the chromatic polynomial. This polynomial has been widely studied in the literature. Yet little is known about the properties of k-defect polynomials of graphs in general, when 0 < k ≤ |E(G)|. In this survey we give some properties of k-defect polynomials, in particular we highlight the properties of chromatic polynomials which also apply to k-defect polynomials. We discuss further research which can be done on the k-defect polynomials.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号