首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If G is a graph with p vertices and at least one edge, we set φ (G) = m n max |f(u) ? f(v)|, where the maximum is taken over all edges uv and the minimum over all one-to-one mappings f : V(G) → {1, 2, …, p}: V(G) denotes the set of vertices of G.Pn will denote a path of length n whose vertices are integers 1, 2, …, n with i adjacent to j if and only if |i ? j| = 1. Pm × Pn will denote a graph whose vertices are elements of {1, 2, …, m} × {1, 2, …, n} and in which (i, j), (r, s) are adjacent whenever either i = r and |j ? s| = 1 or j = s and |i ? r| = 1.Theorem.If max(m, n) ? 2, thenφ(Pm × Pn) = min(m, n).  相似文献   

2.
Let A be an n × n normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…,n. For α, β ? Qm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k ? {0, 1,…, m} we write |αβ| = k if there exists a rearrangement of 1,…, m, say i1,…, ik, ik+1,…, im, such that α(ij) = β(ij), i = 1,…, k, and {α(ik+1),…, α(im) } ∩ {β(ik+1),…, β(im) } = ?. A new bound for |detA[α|β ]| is obtained in terms of the eigenvalues of A when 2m = n and |αβ| = 0.Let Un be the group of n × n unitary matrices. Define the nonnegative number
where | αβ| = k. It is proved that
Let A be semidefinite hermitian. We conjecture that ρ0(A) ? ρ1(A) ? ··· ? ρm(A). These inequalities have been tested by machine calculations.  相似文献   

3.
A circular string A = (a1,…,an) is a string that has n equivalent linear representations Ai = ai,…,an,a1,…,ai?1 for i = 1,…,n. The ai's are assumed to be well ordered. We say that Ai < Aj if the word aiana1ai?1 precedes the word ajana1aj?1 in the lexicographic order, Ai ? Aj if either Ai < Aj or Ai = Aj. Ai0 is a minimal representation of A if Ai0 ? Ai for all 1 ≤ in. The index i0 is called a minimal starting point (m.s.p.). In this paper we discuss the problem of finding m.s.p. of a given circular string. Our algorithm finds, in fact, all the m.s.p.'s of a given circular string A of length n by using at most n + ?d2? comparisons. The number d denotes the difference between two successive m.s.p.'s (see Lemma 1.1) and is equal to n if A has a unique m.s.p. Our algorithm improves the result of 3n comparisons given by K. S. Booth. Only constant auxiliary storage is used.  相似文献   

4.
Let A be an n-square normal matrix over C, and Qm, n be the set of strictly increasing integer sequences of length m chosen from 1,…, n. For α,βQm, n denote by A[α|β] the submatrix obtained from A by using rows numbered α and columns numbered β. For k∈{0,1,…,m} write z.sfnc;αβ|=k if there exists a rearrangement of 1,…,m, say i1,…,ik, ik+1,…,im, such that α(ij)=β(ij), j=1,…,k, and {α(ik+1),…,α(im)};∩{β(ik+1),…,β(im)}=ø. Let
be the group of n-square unitary matrices. Define the nonnegative number
?k(A)= maxU∈|det(U1AU) [α|β]|
, where |αβ|=k. Theorem 1 establishes a bound for ?k(A), 0?k<m?1, in terms of a classical variational inequality due to Fermat. Let A be positive semidefinite Hermitian, n?2m. Theorem 2 leads to an interlacing inequality which, in the case n=4, m=2, resolves in the affirmative the conjecture that
?m(A)??m?1(A)????0(A)
.  相似文献   

5.
In this paper we study subsets of a finite set that intersect each other in at most one element. Each subset intersects most of the other subsets in exactly one element. The following theorem is one of our main conclusions. Let S1,… Sm be m subsets of an n-set S with |S1| ? 2 (l = 1, …,m) and |SiSj| ? 1 (ij; i, j = 1, …, m). Suppose further that for some fixed positive integer c each Si has non-empty intersection with at least m ? c of the remaining subsets. Then there is a least positive integer M(c) depending only on c such that either m ? n or m ? M(c).  相似文献   

6.
In connection with the problem of finding the best projections of k-dimensional spaces embedded in n-dimensional spaces Hermann König asked: Given mR and nN, are there n×n matrices C=(cij), i, j=1,…,n, such that cii=m for all i, |cij|=1 for ij, and C2=(m2+n?1)In? König was especially interested in symmetric C, and we find some families of matrices satisfying this condition. We also find some families of matrices satisfying the less restrictive condition CCT=(m2+n?1)In.  相似文献   

7.
Let Rij be a given set of μi× μj matrices for i, j=1,…, n and |i?j| ?m, where 0?m?n?1. Necessary and sufficient conditions are established for the existence and uniqueness of an invertible block matrix =[Fij], i,j=1,…, n, such that Fij=Rij for |i?j|?m, F admits either a left or right block triangular factorization, and (F?1)ij=0 for |i?j|>m. The well-known conditions for an invertible block matrix to admit a block triangular factorization emerge for the particular choice m=n?1. The special case in which the given Rij are positive definite (in an appropriate sense) is explored in detail, and an inequality which corresponds to Burg's maximal entropy inequality in the theory of covariance extension is deduced. The block Toeplitz case is also studied.  相似文献   

8.
Let G be a finitely presented group given by its pre-abelian presentation <X1,…,Xm; Xe11ζ1,…,Xemmζ,ζm+1,…>, where ei≥0 for i = 1,…, m and ζj?G′ for j≥1. Let N be the subgroup of G generated by the normal subgroups [xeii, G] for i = 1,…, m. Then Dn+2(G)≡γn+2(G) (modNG′) for all n≥0, where G” is the second commutator subgroup of Gn+2(G) is the (n+2)th term of the lower central series of G and Dn+2(G) = G∩(1+△n+2(G)) is the (n+2)th dimension subgroup of G.  相似文献   

9.
Szemerédi's theorem states that given any positive number B and natural number k, there is a number n(k, B) such that if n ? n(k, B) and 0 < a1 < … < an is a sequence of integers with an ? Bn, then some k of the ai form an arithmetic progression. We prove that given any B and k, there is a number m(k, B) such that if m ? m(k, B) and u0, u1, …, um is a sequence of plane lattice points with ∑i=1m…ui ? ui?1… ? Bm, then some k of the ui are collinear. Our result, while similar to Szemerédi's theorem, does not appear to imply it, nor does Szemerédi's theorem appear to imply our result.  相似文献   

10.
The following is proved (in a slightly more general setting): Let α1, …, αm be positive real, γ1, …, γm real, and suppose that the system [i + γi], i = 1, …, m, n = 1, 2, …, contains every positive integer exactly once (= a complementing system). Then αiαj is an integer for some ij in each of the following cases: (i) m = 3 and m = 4; (ii) m = 5 if all αi but one are integers; (iii) m ? 5, two of the αi are integers, at least one of them prime; (iv) m ? 5 and αn ? 2n for n = 1, 2, …, m ? 4.For proving (iv), a method of reduction is developed which, given a complementing system of m sequences, leads under certain conditions to a derived complementing system of m ? 1 sequences.  相似文献   

11.
Let X1, X2, …, Xm be finite sets. The present paper is concerned with the m2 ? m intersection numbers |XiXj| (ij). We prove several theorems on families of sets with the same prescribed intersection numbers. We state here one of our conclusions that requires no further terminology. Let T1, T2, …, Tm be finite sets and let m ? 3. We assume that each of the elements in the set union T1T2 ∪ … ∪ Tm occurs in at least two of the subsets T1, T2, …, Tm. We further assume that every pair of sets Ti and Tj (ij) intersect in at most one element and that for every such pair of sets there exists exactly one set Tk (ki, kj) such that Tk intersects both Ti and Tj. Then it follows that the integer m = 2m′ + 1 is odd and apart from the labeling of sets and elements there exist exactly m′ + 1 such families of sets. The unique family with the minimal number of elements is {1}, {2}, …, {m′}, {1}, {2}, …, {m′}, {1, 2, …, m′}.  相似文献   

12.
Let A be a Latin square of order n. Then the jth right diagonal of A is the set of n cells of A: {(i,j+i):i=0,1…,n?1(modn); and the jth left diagonal of A is the set {(i,j?i):i=0,1…,n?1(modn); A diagonal is said to be complete if every element appears in it exactly once. For n = 2m even, we introduce the concept of a crisscross Latin square which is something in between a diagonal Latin square and a Knut Vik design. A crisscross Latin square is a Latin square such that all the jth right diagonals for even j and all the jth left diagonals for odd j are complete. We show that a necessary and sufficient condition for the existence of a crisscross Latin square of order 2m is that m is even.  相似文献   

13.
Consider n jobs (J1,J2,…,Jn) and m machines (M1,M2…,Mm). Upon completion of processing of Ji, 1 ? i ? n, on Mj 1 ? j ? m ? 1, it departs with probability pi or moves to Mj+1 with the complementary probability, 1?pi. A job completing service on Mm departs. The processing time of ji on Mj possesses a distribution function Fj. It is proved that sequencing the jobs in a nondecreasing order of pi minimizes in distribution the schedule length.  相似文献   

14.
Let T be a rooted tree structure with n nodes a1,…,an. A function f: {a1,…,an} into {1 < ? < k} is called monotone if whenever ai is a son of aj, then f(ai) ≥ f(aj). The average number of monotone bijections is determined for several classes of tree structures. If k is fixed, for the average number of monotone functions asymptotic equivalents of the form c · ??nn?32 (n → ∞) are obtained for several classes of tree structures.  相似文献   

15.
A proof is given for the existence and uniqueness of a correspondence between two pairs of sequences {a},{b} and {ω},{μ}, satisfying bi>0 for i=1,…,n?1 and ω11<?<μn?1n, under which the symmetric Jacobi matrices J(n,a,b) and J(n?1,a,b) have eigenvalues {ω} and {μ} respectively. Here J(m,a,b) is symmetric and tridiagonal with diagonal elements ai (i=1,…,m) and off diagonal elements bi (i=1,…,m?1). A new concise proof is given for the known uniqueness result. The existence result is new.  相似文献   

16.
Let xi ≥ 0, yi ≥ 0 for i = 1,…, n; and let aj(x) be the elementary symmetric function of n variables given by aj(x) = ∑1 ≤ ii < … <ijnxiixij. Define the partical ordering x <y if aj(x) ≤ aj(y), j = 1,… n. We show that x $?y ? xα$?yα, 0 $?α ≤ 1, where {xα}i = xαi. We also give a necessary and sufficient condition on a function f(t) such that x <y ? f(x) <f(y). Both results depend crucially on the following: If x <y there exists a piecewise differentiable path z(t), with zi(t) ≥ 0, such that z(0) = x, z(1) = y, and z(s) <z(t) if 0 ≤ st ≤ 1.  相似文献   

17.
In this paper we study de Bruijn-Erdös type theorems that deal with the foundations of finite geometries. The following theorem is one of our main conclusions. Let S1,…, Sn be n subsets of an n-set S. Suppose that |Si| ? 3 (i = 1,…,n) and that |SiSj| ? 1 (ij;i,j = 1,…,n). Suppose further that each Si has nonempty intersection with at least n ? 2 of the other subsets. Then the subsets S1,…,Sn of S are one of the following configurations. (1) They are a finite projective plane. (2) They are a symmetric group divisible design and each subset has nonempty intersection with exactly n ? 2 of the other subsets. (3) We have n = 9 or n = 10 and in each case there exists a unique configuration that does not satisfy (1) or (2).  相似文献   

18.
Consider the separable nonlinear least squares problem of findinga εR n and α εR k which, for given data (y i ,t i ),i=1,2,...m, and functions ? j (α,t),j=1,2,...,n(m>n), minimize the functional $$r(a,\alpha ) = \left\| {y - \Phi (\alpha )a} \right\|_2^2$$ where θ(α) ij =? j (α,t i ). Golub and Pereyra have shown that this problem can be reduced to a nonlinear least squares problem involvingα only, and a linear least squares problem involvinga only. In this paper we propose a new method for determining the optimalα which computationally has proved more efficient than the Golub-Pereyra scheme.  相似文献   

19.
A sequence {d, d+1,…, d+m?1} of m consecutive positive integers is said to be perfect if the integers {1, 2,…, 2m} can be arranged in disjoint pairs {(ai, bi): 1?i?m} so that {bi?ai: 1?i?m}={d,d+1,…,d+m?1}. A sequence is hooked if the set {1, 2,…, 2m?1 2m+1} can be arranged in pairs to satisfy the same condition. Well known necessary conditions for perfect sequences are herein shown to be sufficient. Similar necessary and sufficient conditions for hooked sequences are given.  相似文献   

20.
We solve the following problem. For 1 ⩽ j, kn and |jk| ⩽ m, let ajk be a given complex number with akj = ājk. We wish to find linearly independent vectors x1,…,xn such that 〈xk, xj〉 = ajk for |jk| ⩽ m and such that the distance from xk to the linear span of x1,…,xk−1 is maximal for 2 ⩽ kn. We construct and characterize all such sequences of vectors. Our solution leads naturally to the class of m-band sequences of vectors in an inner product space. We study these sequences and characterize their equivalence classes under unitary transformations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号