首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
在均匀网格上求解对流占优问题时,往往会产生数值震荡现象,因此需要局部加密网格来提高解的精度。针对对流占优问题,设计了一种新的自适应网格细化算法。该方法采用流线迎风SUPG(Petrov-Galerkin)格式求解对流占优问题,定义了网格尺寸并通过后验误差估计子修正来指导自适应网格细化,以泡泡型局部网格生成算法BLMG为网格生成器,通过模拟泡泡在区域中的运动得到了高质量的点集。与其他自适应网格细化方法相比,该方法可在同一框架内实现网格的细化和粗化,同时在所有细化层得到了高质量的网格。数值算例结果表明,该方法在求解对流占优问题时具有更高的数值精度和更好的收敛性。  相似文献   

2.
全自动自适应网格细化   总被引:1,自引:0,他引:1  
本文利用弹塑性误差估计模型,预示出金属成形数值模拟过程中网格细化时新网格尺寸,提出补角法修正锻件边界构形并利用三次B样条统一表达边界构形,实现了对边界细化并进而产生自适应细化网格。  相似文献   

3.
Some periodic contact problems for an elastic strip are considered. These problems are solved by the collocation method with the Chebyshev nodes.  相似文献   

4.
带约束的优化问题的目的是要找到满足等式或者不等式约束的最优点。在某些情况下,优化求解得到的"最优点"可能会使得某个或某几个约束条件超出目标约束限,或者在所有约束条件中的最大值远远小于目标约束限。针对这一类问题,本文提出一种在寻优过程的每一次迭代中自适应调整约束限的方法,通过动态调整迭代过程中迭代模型约束限的值,将约束条件中最大值的约束条件变为等式约束,使得迭代解始终在可行域范围内,且收敛后的最优解不违背任何约束条件。本文将该方法成功应用于位移约束下结构重量最小化拓扑优化模型,原来不满足约束条件的情况在使用该方法后都能使约束得到满足,解决了约束条件被违背的问题。  相似文献   

5.
Feature‐based solution‐adaptive mesh refinement is an attractive strategy when it is known a priori that the resolution of certain key features is critical to achieving the objectives of a simulation. In this paper, we apply vortex characterization techniques, which are typically employed to visualize vortices, to identify regions of the computational domain for mesh refinement. We investigate different refinement strategies that are facilitated by these vortex characterization techniques to simulate the flow past a wing in a wind tunnel. Our results, which we compare with experimental data, indicate that it is necessary to refine the region within and near the vortex extent surface to obtain an accurate prediction. Application of the identified mesh refinement strategy also produced observed improvement in the results predicted for a spinning missile with deflected canards. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

6.
N. Uchiyama  O. Inoue 《Shock Waves》1992,2(2):117-120
A finite difference scheme for the unsteady Euler equations using an adaptive mesh refinement (AMR) algorithm was applied to the time-dependent flowfield of shock diffraction problems. The effectiveness of the AMR algorithm was evaluated against a uniform mesh algorithm. Computational results showed that to obtain solutions with equivalent resolution, the AMR algorithm requires much less processing time, when compared with a uniform mesh algorithm.This article was processed using Springer-Verlag TEX Shock Waves macro package 1.0 and the AMS fonts, developed by the American Mathematical Society.  相似文献   

7.
8.
9.
传统的位移有限元法采用多项式形式的位移试函数,对于边数大于4的多边形单元,构造满足单元间协调性要求的多项式形式位移插值函数是一件困难的工作。本文利用逆距离权插值的思想并考虑到单元节点的分布,建立了边数大于4多边形单元上的有理函数形式的形函数。利用有理试函数,采用Galerkin法推导出求解平面弹性力学问题的有理单元法。采用有理单元法求解弹性力学问题,求解区域根据需要可以划分为任意多边形单元,极大地提高了网格划分的灵活性。有理单元法不依赖等参变换,不同单元的形函数表达形式统一,方便计算程序的编写。  相似文献   

10.
In this paper, the detailed two-dimensional infinite element method (IEM) formulation with infinite element (IE)–finite element (FE) coupling scheme for investigating mode I stress intensity factor in elastic problems with imbedded geometric singularities (e.g. cracks) is presented. The IE–FE coupling algorithm is also successfully extended to solve multiple crack problems. In this method, the domain of the primary problem is subdivided into two sub-domains modeled separately using the IEM for the multiple crack sub-domain, and the FEM for the uncracked sub-domain. In the IE sub-domain, the similarity partition concept together with the IEM formulation are employed to automatically generate a large number of infinitesimal elements, layer by layer, around the tip of each crack. All degrees of freedom related to the IE sub-domain, except for those associated with the coupling interface, are condensed and transformed to form a finite master IE for each crack with master nodes on sub-domain boundary only. All of the stiffness matrices constructed in the IE sub-domains are assembled into the system stiffness matrix for the FE sub-domain. The resultant FE solution with a symmetrical stiffness matrix, having the singularity effect of imbedded cracks in IEs, is required only for solving multiple crack problems.Using these efficient numerical techniques a very fine mesh pattern can be established around each crack tip without increasing the degree of freedom of the global FEM solution. One is easily allowed to conduct parametric analyses for various crack sizes without changing the FE mesh. Numerical examples are presented to show the performance of the proposed method and compared with the corresponding known results where available.  相似文献   

11.
Presently, improving the accuracy and reducing computational costs are still two major CFD objectives often considered incompatible. This paper proposes to solve this dilemma by developing an adaptive mesh refinement method in order to integrate the 3D Euler and Navier–Stokes equations on structured meshes, where a local multigrid method is used to accelerate convergence for steady compressible flows. The time integration method is a LU‐SGS method (AIAA J 1988; 26: 1025–1026) associated with a spatial Jameson‐type scheme (Numerical solutions of the Euler equations by finite volume methods using Runge–Kutta time‐stepping schemes. AIAA Paper, 81‐1259, 1981). Computations of turbulent flows are handled by the standard k–ω model of Wilcox (AIAA J 1994; 32: 247–255). A coarse grid correction, based on composite residuals, has been devised in order to enforce the coupling between the different grid levels and to accelerate the convergence. The efficiency of the method is evaluated on standard 2D and 3D aerodynamic configurations. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
High-order schemes based on block-structured adaptive mesh refinement method are prepared to solve computational aeroacoustic (CAA) problems with an aim at improving computational efficiency. A number of numerical issues associated with high-order schemes on an adaptively refined mesh, such as stability and accuracy are addressed. Several CAA benchmark problems are used to demonstrate the feasibility and efficiency of the approach.  相似文献   

13.
Based on elementary group theory, the block pivot methods for solving two-dimensional elastic frictional contact problems are presented in this paper. It is proved that the algorithms converge within a finite number of steps when the friction coefficient is “relative small”. Unlike most mathematical programming methods for contact problems, the block pivot methods permit multiple exchanges of basic and nonbasic variables. The project supported by the National Natural Science Foundation of China  相似文献   

14.
三维接触问题的非光滑算法   总被引:10,自引:1,他引:10  
给出了一种非光滑算法直接用于求解三维摩擦接触问题的不可微非线性互补模型,不再对模型进行光滑化处理,使算法更加简单。文中对非光滑算法的收敛性给出了严格的数学证明,数值实验表明该算法列式简单,但与光滑化算法同样有效。  相似文献   

15.
A multi‐block curvilinear mesh‐based adaptive mesh refinement (AMR) method is developed to satisfy the competing objectives of improving accuracy and reducing cost. Body‐fitted curvilinear mesh‐based AMR is used to capture flow details of various length scales. A series of efforts are made to guarantee the accuracy and robustness of the AMR system. A physics‐based refinement function is proposed, which is proved to be able to detect both shock wave and vortical flow. The curvilinear mesh is refined with cubic interpolation, which guarantees the aspect ratio and smoothness. Furthermore, to enable its application in complex configurations, a sub‐block‐based refinement strategy is developed to avoid generating invalid mesh, which is the consequence of non‐smooth mesh lines or singular geometry features. A newfound problem of smaller wall distance, which negatively affects the stability and is never reported in the literature, is also discussed in detail, and an improved strategy is proposed. Together with the high‐accuracy numerical scheme, a multi‐block curvilinear mesh‐based AMR system is developed. With a series of test cases, the current method is verified to be accurate and robust and be able to automatically capture the flow details at great cost saving compared with the global refinement. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

16.
The paper deals with the plane elastostatic contact problem for an infinite elastic wedge of arbitrary angle. The medium is loaded through a frictionless rigid wedge of a given symmetric profile. Using the Mellin transform formulation the mixed boundary value problem is reduced to a singular integral equation with the contact stress as the unknown function. With the application of the results to the fracture of the medium in mind, the main emphasis in the study has been on the investigation of the singular nature of the stress state around the apex of the wedge and on the determination of the contact pressure.
Résumé Dans cet essai le problème plan élastostatique de contact pour un coin élastique d'angle arbitraire est étudié. Le milieu est chargé à travers un coin rigide de profil symétrique sans friction. En utilisant la transformation de Mellin le problème de valeurs limites mixtes, est réduit à une équation intégrale singulière où l'effort de contact est la fonction inconnue. Avec l'application des résultats de la rupture du milieu, l'étude est concentrée principalement sur l'investigation de la nature singulière de l'état d'effort autour du sommet du coin et sur la détermination de la pression de contact.


This work was supported by NSF under the Grant GK 42771X and by NASA under the Grant NGR 39-007-011.  相似文献   

17.
Self-similar problems of contact for non-convex punches are considered. The non-convexity of the punch shapes introduces differences from the traditional self-similar contact problems when punch profiles are convex and their shapes are described by homogeneous functions. First, three-dimensional Hertz type contact problems are considered for non-convex punches whose shapes are described by parametric-homogeneous functions. Examples of such functions are numerous including both fractal Weierstrass type functions and smooth log-periodic sine functions. It is shown that the region of contact in the problems is discrete and the solutions obey a non-classical self-similar law. Then the solution to a particular case of the contact problem for an isotropic linear elastic half-space when the surface roughness is described by a log-periodic function, is studied numerically, i.e. the contact problem for rough punches is studied as a Hertz type contact problem without employing additional assumptions of the multi-asperity approach. To obtain the solution, the method of non-linear boundary integral equations is developed. The problem is solved only on the fundamental domain for the parameter of self-similarity because solutions for other values of the parameter can be obtained by renormalization of this solution. It is shown that the problem has some features of chaotic systems, namely the global character of the solution is independent of fine distinctions between parametric-homogeneous functions describing roughness, while the stress field of the problem is sensitive to small perturbations of the punch shape.  相似文献   

18.
This article proposes an efficient method for solving mechanics boundary value problems formulated for domains with multiscale self-similar microstructure. In particular, composite materials for which one of the phases has a fractal-like structure with scale cut-offs are considered. The boundary value problems are solved using a finite element procedure with enriched shape functions that incorporate information about the geometric complexity. The use of these shape functions makes possible the definition of a unique, parametrically defined model from which the solution for configurations with an arbitrary number of scales can be derived. The proposed method is primarily useful for structures with a large number of self-similar scales for which using the usual finite element method would be too expensive. In order to exemplify the method, a 2D composite with fractal microstructure is considered and several boundary value problems are solved.  相似文献   

19.
《力学快报》2021,11(6):100309
The present study provides a three-dimensional volume-of-fluid method based on the adaptive mesh refinement technique. The projection method on the adaptive mesh is introduced for solving the incompressible Navier-Stokes equations. The octree structure mesh is employed to solve the flow velocities and the pressure. The developed solver is applied to simulate the deformation of the cubic droplet driven by the surface tension without the effect of the gravity. The numerical results well predict the shape evolution of the droplet.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号