首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
This is a summary of the main results presented in the author’s PhD thesis, supervised by D. Conforti and P. Beraldi and defended on March 2005. The thesis, written in English, is available from the author upon request. It describes one of the very few existing implementations of a method for solving stochastic mixed integer nonlinear programming problems based on deterministic global optimization. In order to face the computational challenge involved in the solution of such multi-scenario nonconvex problems, a branch and bound approach is proposed that exploits the peculiar structure of stochastic programming problem.  相似文献   

2.
Solving mixed integer nonlinear programs by outer approximation   总被引:1,自引:0,他引:1  
A wide range of optimization problems arising from engineering applications can be formulated as Mixed Integer NonLinear Programming problems (MINLPs). Duran and Grossmann (1986) suggest an outer approximation scheme for solving a class of MINLPs that are linear in the integer variables by a finite sequence of relaxed MILP master programs and NLP subproblems.Their idea is generalized by treating nonlinearities in the integer variables directly, which allows a much wider class of problem to be tackled, including the case of pure INLPs. A new and more simple proof of finite termination is given and a rigorous treatment of infeasible NLP subproblems is presented which includes all the common methods for resolving infeasibility in Phase I.The worst case performance of the outer approximation algorithm is investigated and an example is given for which it visits all integer assignments. This behaviour leads us to include curvature information into the relaxed MILP master problem, giving rise to a new quadratic outer approximation algorithm.An alternative approach is considered to the difficulties caused by infeasibility in outer approximation, in which exact penalty functions are used to solve the NLP subproblems. It is possible to develop the theory in an elegant way for a large class of nonsmooth MINLPs based on the use of convex composite functions and subdifferentials, although an interpretation for thel 1 norm is also given.This work is supported by SERC grant no. SERC GR/F 07972.Corresponding author.  相似文献   

3.
4.
We consider maximin and minimax nonlinear mixed integer programming problems which are nonsymmetric in duality sense. Under weaker (pseudo-convex/pseudo-concave) assumptions, we show that the supremum infimum of the maximin problem is greater than or equal to the infimum supremum of the minimax problem. As a particular case, this result reduces to the weak duality theorem for minimax and symmetric dual nonlinear mixed integer programming problems. Further, this is used to generalize available results on minimax and symmetric duality in nonlinear mixed integer programming.  相似文献   

5.
This paper introduces a new algorithm for solving mixed integer programs. The core of the method is an iterative technique for changing the representation of the original mixed integer optimization problem. Supported by grants FKZ 0037KD0099 and FKZ 2495A/0028G of the Kultusministerium of Sachsen-Anhalt.Supported by a Gerhard-Hess-Preis and grant WE 1462 of the Deutsche Forschungsgemeinschaft, and by the European DONET program TMR ERB FMRX-CT98-0202.Mathematics Subject Classification (1991):90C11  相似文献   

6.
In this paper, we develop algorithms to find small representative sets of nondominated points that are well spread over the nondominated frontiers for multi-objective mixed integer programs. We evaluate the quality of representations of the sets by a Tchebycheff distance-based coverage gap measure. The first algorithm aims to substantially improve the computational efficiency of an existing algorithm that is designed to continue generating new points until the decision maker (DM) finds the generated set satisfactory. The algorithm improves the coverage gap value in each iteration by including the worst represented point into the set. The second algorithm, on the other hand, guarantees to achieve a desired coverage gap value imposed by the DM at the outset. In generating a new point, the algorithm constructs territories around the previously generated points that are inadmissible for the new point based on the desired coverage gap value. The third algorithm brings a holistic approach considering the solution space and the number of representative points that will be generated together. The algorithm first approximates the nondominated set by a hypersurface and uses it to plan the locations of the representative points. We conduct computational experiments on randomly generated instances of multi-objective knapsack, assignment, and mixed integer knapsack problems and show that the algorithms work well.  相似文献   

7.
In this paper, we describe the implementation of some heuristics for convex mixed integer nonlinear programs. The work focuses on three families of heuristics that have been successfully used for mixed integer linear programs: diving heuristics, the Feasibility Pump, and Relaxation Induced Neighborhood Search (RINS). We show how these heuristics can be adapted in the context of mixed integer nonlinear programming. We present results from computational experiments on a set of instances that show how the heuristics implemented help finding feasible solutions faster than the traditional branch-and-bound algorithm and how they help in reducing the total solution time of the branch-and-bound algorithm.  相似文献   

8.
This paper is concerned with computational experimentation leading to the design of effective branch and bound algorithms for an important class of nonlinear integer programming problems, namely linearly constrained problems, which are used to model several real-world situations. The main contribution here is a study of the effect of node and branching variable selection and storage reduction strategies on overall computational effort for this class of problems, as well as the generation of a set of adequate test problems. Several node and branching variable strategies are compared in the context of a pure breadth-first enumeration, as well as in a special breadth and depth enumeration combination approach presented herein. Also, the effect of using updated pseudocosts is briefly addressed. Computational experience is presented on a set of eighteen suitably-sized nonlinear test problems, as well as on some random linear integer programs. Some of the new rules proposed are demonstrated to be significantly superior to previously suggested strategies; interestingly, even for linear integer programming problems.  相似文献   

9.
This paper is concerned with computational experimentation leading to the design of effective branch and bound algorithms for an important class of nonlinear integer programming problems, namely linearly constrained problems, which are used to model several real-world situations. The main contribution here is a study of the effect of node and branching variable selection and storage reduction strategies on overall computational effort for this class of problems, as well as the generation of a set of adequate test problems. Several node and branching variable strategies are compared in the context of a pure breadth-first enumeration, as well as in a special breadth and depth enumeration combination approach presented herein. Also, the effect of using updated pseudocosts is briefly addressed. Computational experience is presented on a set of eighteen suitably-sized nonlinear test problems, as well as on some random linear integer programs. Some of the new rules proposed are demonstrated to be significantly superior to previously suggested strategies; interestingly, even for linear integer programming problems.  相似文献   

10.
This tutorial presents a theory of valid inequalities for mixed integer linear sets. It introduces the necessary tools from polyhedral theory and gives a geometric understanding of several classical families of valid inequalities such as lift-and-project cuts, Gomory mixed integer cuts, mixed integer rounding cuts, split cuts and intersection cuts, and it reveals the relationships between these families. The tutorial also discusses computational aspects of generating the cuts and their strength. Supported by NSF grant DMI-0352885, ONR grant N00014-03-1-0188 and ANR grant BLAN06-1-138894.  相似文献   

11.
We describe a computationally effective method for generating lift-and-project cuts for convex mixed-integer nonlinear programs (MINLPs). The method relies on solving a sequence of cut-generating linear programs and in the limit generates an inequality as strong as the lift-and-project cut that can be obtained from solving a cut-generating nonlinear program. Using this procedure, we are able to approximately optimize over the rank one lift-and-project closure for a variety of convex MINLP instances. The results indicate that lift-and-project cuts have the potential to close a significant portion of the integrality gap for convex MINLPs. In addition, we find that using this procedure within a branch-and-cut solver for convex MINLPs significantly reduces the total solution time for many instances. We also demonstrate that combining lift-and-project cuts with an extended formulation that exploits separability of convex functions yields significant improvements in both relaxation bounds and the time to calculate the relaxation. Overall, these results suggest that with an effective separation routine, like the one proposed here, lift-and-project cuts may be as effective for solving convex MINLPs as they have been for solving mixed-integer linear programs.  相似文献   

12.
Strong branching is an effective branching technique that can significantly reduce the size of the branch-and-bound tree for solving mixed integer nonlinear programming (MINLP) problems. The focus of this paper is to demonstrate how to effectively use “discarded” information from strong branching to strengthen relaxations of MINLP problems. Valid inequalities such as branching-based linearizations, various forms of disjunctive inequalities, and mixing-type inequalities are all discussed. The inequalities span a spectrum from those that require almost no extra effort to compute to those that require the solution of an additional linear program. In the end, we perform an extensive computational study to measure the impact of each of our proposed techniques. Computational results reveal that existing algorithms can be significantly improved by leveraging the information generated as a byproduct of strong branching in the form of valid inequalities.  相似文献   

13.
We consider a class of mixed integer programs in which the concave objective function and the constraint matrix are held fixed while some of the right hand side (RHS) coefficients are varied. An efficient iterative algorithm is developed for performing the above sensitivity analysis. A practical application of this class of programs is encountered in environmental policy making and accordingly it is used in illustrating the operation of the algorithm.  相似文献   

14.
15.
We present cutting plane algorithms for the inverse mixed integer linear programming problem (InvMILP), which is to minimally perturb the objective function of a mixed integer linear program in order to make a given feasible solution optimal.  相似文献   

16.
We present a generalization of the mixed integer rounding (MIR) approach for generating valid inequalities for (mixed) integer programming (MIP) problems. For any positive integer n, we develop n facets for a certain (n + 1)-dimensional single-constraint polyhedron in a sequential manner. We then show that for any n, the last of these facets (which we call the n-step MIR facet) can be used to generate a family of valid inequalities for the feasible set of a general (mixed) IP constraint, which we refer to as the n-step MIR inequalities. The Gomory Mixed Integer Cut and the 2-step MIR inequality of Dash and günlük  (Math Program 105(1):29–53, 2006) are the first two families corresponding to n = 1,2, respectively. The n-step MIR inequalities are easily produced using periodic functions which we refer to as the n-step MIR functions. None of these functions dominates the other on its whole period. Finally, we prove that the n-step MIR inequalities generate two-slope facets for the infinite group polyhedra, and hence are potentially strong.   相似文献   

17.
We propose an Integer Linear Programming (ILP) approach for solving integer programs with bilinear objectives and linear constraints. Our approach is based on finding upper and lower bounds for the integer ensembles in the bilinear objective function, and using the bounds to obtain a tight ILP reformulation of the original problem, which can then be solved efficiently. Numerical experiments suggest that the proposed approach outperforms a latest iterative ILP approach, with notable reductions in the average solution time.  相似文献   

18.
An efficient procedure that concurrently generates Outer-Approximation and Benders cuts is devised to tackle the single allocation hub location problem under congestion, an MINLP. The proposed method is able to optimally solve large instances (up to 200 nodes) in reasonable time. The combination of both cuts is an algorithmic novelty.  相似文献   

19.
A method of constructing test problems with known global solution for a class of reverse convex programs or linear programs with an additional reverse convex constraint is presented. The initial polyhedron is assumed to be a hypercube. The method then systematically generates cuts that slice the cube in such a way that a prespecified global solution on its edge remains intact. The proposed method does not require the solution of linear programs or systems of linear equations as is often required by existing techniques.The author would like to thank Prof. S. E. Jacobsen for his valuable remarks on initial drafts of this paper and the referees for their constructive suggestions.  相似文献   

20.
A pair of symmetric dual multiobjective variational mixed integer programs for the polars of arbitrary cones are formulated, which some primal and dual variables are constrained to belong to the set of integers. Under the separability with respect to integer variables and partial-invexity assumptions on the functions involved, we prove the weak, strong, converse and self-duality theorems to related minimax efficient solution. These results include some of available results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号