首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During the past decade, the application of Nuclear Magnetic Resonance (NMR) imaging techniques to problems of relevance to the process industries has been identified. In the context of particle technology, NMR imaging, in addition to the more routinely used techniques of Pulsed Gradient Spin Echo (PGSE) NMR and NMR spectroscopy, offer new methods of characterising pore structure, adsorption and diffusion processes within particles and packed beds of particles, as well as enabling time-resolved in-situ study of processes such as twophase flow, aggregation, polymerisation, crystallisation and phase separation phenomena. This paper reviews recent work in these areas, and also highlights the new insights NMR imaging can give us regarding the characterisation of porous materials, and the influence of the structure of the pore space on the transport processes occuring within a given porous solid.  相似文献   

2.
NMR imaging is employed to study the preparation of supported catalysts and a number of mass transport processes in porous catalysts and sorbents. It is shown that, similar to Pt, adsorbed Pd leads to the increase of the relaxation times of liquids permeating porous alumina supports. A faster penetration of adsorbed water into the sorbent is observed when water vapor sorption by selective water sorbents is carried out under vacuum as compared to the sorption from moist air. An interruption of the capillary flow of water within the monolithic catalyst is shown to lead to a non-uniform drying along the monolith channels. Flow imaging of water inflowing into the monolith has revealed a complicated flow pattern characterized by the existence of counterflows in the entrance region.  相似文献   

3.
The1H nuclear magnetic resonance (NMR) microimaging is employed to study the mass transport processes in porous materials, including individual catalyst support pellets and beds comprised of porous grains. Drying and adsorption are investigated by detecting the temporal evolution of the one-dimensional spatial profiles or two-dimensional maps of liquid content without interrupting the process under study. The characteristic features of these processes, such as the main mechanisms and the limiting stages of mass transport, and some factors which can alter the efficiency of mass transport are considered. The problems associated with the relaxation weighting of the NMR signals, often unavoidable for liquids permeating mesoporous solids, and the possibilities to overcome these problems are discussed.  相似文献   

4.
The NMR methods that are used to characterize inanimate porous media measure relaxation times and related phenomena and material transport, fluid displacement and flow. Biological tissues are comprised of multiple small, fluid-filled compartments, such as cells, that restrict the movement of the bulk solvent water and whose constituents influence water proton relaxation times via numerous interactions with macromolecular surfaces. Several of the methods and concepts that have been developed in one field of application are also of great value in the other, and it may be expected that technical developments that have been spurred by biomedical applications of MR imaging will be used in the continuing study of porous media. Some recent specific studies from our laboratory include the development of multiple quantum coherence methods for studies of ordered water in anisotropic macromolecular assemblies, studies of the degree of restriction of water diffusion in cellular systems, multiple selective inversion imaging to depict the ratios of proton pool sizes and rates of magnetization transfer between proton populations, and diffusion tensor imaging to depict tissue anisotropies. These illustrate how approaches to obtain structural information from biological media are also relevant to porous media. For example, the recent development of oscillating gradient spin echo techniques (OGSE), an approach that extends our ability to resolve apparent diffusion changes over different time scales in tissues, has also been used to compute surface to volume measurements in assemblies of pores. Each of the new methods can be adapted to provide spatially resolved quantitative measurements of properties of interest, and these can be efficiently acquired with good accuracy using fast imaging methods such as echo planar imaging. The community of NMR scientists focused on applications to porous media should remain in close communication with those who use MRI to study problems in biomedicine, to their mutual benefits.  相似文献   

5.
Pulsed field gradient NMR flow propagators for water flow in Bentheimer sandstone are measured at low fields (1H resonance 2 MHz), using both unipolar and bipolar variants of the pulsed gradient method. We compare with propagators measured at high fields (1H resonance 85 MHz). We show that (i) measured flow propagators appear to be equivalent, in this rock, and (ii) the lower signal to noise ratio at low fields is not a serious limitation. By comparing different pulse sequences, we study the effects of the internal gradients on the propagator measurement at 2 MHz, which for certain rocks may persist even at low fields.  相似文献   

6.
Magnetic resonance imaging has been introduced to study flow in microchannels using pure phase spatial encoding with a microfabricated parallel-plate nuclear magnetic resonance (NMR) probe. The NMR probe and pure phase spatial encoding enhance the sensitivity and resolution of the measurement. In this paper, 1H NMR spectra and images were acquired at 100 MHz. The B1 magnetic field is homogeneous and the signal-to-noise ratio of 30 μl doped water for a single scan is 8×104. The high sensitivity of the probe enables velocity mapping of the fluids in the micro-channel with a spatial resolution of 13×13 μm. The parallel-plate probe with pure phase encoding permits the acquisition of NMR spectra; therefore, chemical shift resolved velocity mapping was also undertaken. Results are presented which show separate velocity maps for water and methanol flowing through a straight circular micro-channel. Finally, future performance of these techniques for the study of microfluidics is extrapolated and discussed.  相似文献   

7.
In this study, a 267-microm-diameter solenoid transceiver is used to acquire localized (1)H NMR spectra and the measured signal-to-noise ratio (SNR) at 500 MHz is shown to be within 20--30% of theoretical limits formulated by considering only its resistive losses. This is illustrated using a 100-microm-diameter globule of triacylglycerols (approximately 900mM) that may be an oocyte precursor in young Xenopus laevis frogs and a water sample containing choline at a concentration often found in live mammalian cells (approximately 33 mM). In chemical shift imaging (CSI) experiments performed using a few thousand total scans, the choline methyl line is shown to have an acceptable SNR in resolved volume elements containing only 50 pL of sample, and localized spectra are resolved from just 5 pL in the Xenopus globule. These findings demonstrate the feasibility of performing (1)H NMR on picoliter-scale sample volumes in biological cells and tissues and illustrate how the achieved SNR in spectroscopic images can be predicted with reasonable accuracy at microscopic spatial resolutions.  相似文献   

8.
中国科学院武汉物理与数学研究所(WIPM)于2010年成功研制了500 MHz(WIPM-I 500)高分辨超导核磁共振(NMR)谱仪,并将其投入实际应用中.然而,关于其二维核磁共振(2D NMR)谱图的准确性及在此基础上对复杂物质的结构解析尚无系统完整的数据报道.该文利用WIPM-I 500型NMR谱仪,对紫杉醇样品进行了1D NMR及2D NMR(包括1H-1H COSY、1H-1H TOCSY、J-Res、1H-13C HMQC和1H-13C HMBC)实验,将谱图分析结果与进口仪器进行了对比.结果表明:利用WIPM-I 500型NMR谱仪能够采集准确的2D NMR谱图,为紫杉醇的正确归属提供了实验基础;而且该文也纠正了文献中对紫杉醇的错误归属.  相似文献   

9.
The combined use of two unconventional NMR diffusometry techniques permits measurements of the self-diffusion coefficient of fluids confined in porous media in the time range from 100 microseconds to seconds. The fringe field stimulated echo technique (FFStE) exploits the strong steady gradient in the fringe field of a superconducting magnet. Using a standard 9.4 T (400 MHz) wide-bore magnet, for example, the gradient is 22 T/m at 375 MHz proton resonance and reaches 60 T/m at 200 MHz. Extremely short diffusion times can be probed on this basis. The magnetization grid rotating frame imaging technique (MAGROFI) is based on gradients of the radio frequency (RF) field. The RF gradients not necessarily need be constant since the data are acquired with spatial resolution along the RF gradient direction. MAGROFI is also well suited for unilateral NMR applications where all fields are intrinsically inhomogeneous. The RF gradients reached depend largely on the RF coil diameter and geometry. Using a conic shape, a value of at least 0.3 T/m can be reached which is suitable for long-time diffusion measurements. Both techniques do not require any special hardware and can be implemented on standard high RF power NMR spectrometers. As an application, the influence of the tortuosity increasing with the diffusion time is examined in a saturated porous silica glass.  相似文献   

10.
A time-of-flight imaging technique is introduced to visualize fluid flow and dispersion through porous media using NMR. As the fluid flows through a sample, the nuclear spin magnetization is modulated by rf pulses and magnetic field gradients to encode the spatial coordinates of the fluid. When the fluid leaves the sample, its magnetization is recorded by a second rf coil. This scheme not only facilitates a time-dependent imaging of fluid flow, it also allows a separate optimization of encoding and detection subsystems to enhance overall sensitivity. The technique is demonstrated by imaging gas flow through a porous rock.  相似文献   

11.
The 1H and 13C NMR spectra of methaqualone, 1, have been extensively studied using one and two-dimensional techniques. These 300 MHz 1H and 75 MHz 13C studies have allowed rigorous assignments to be made for the methyl groups and the quinazolinone nucleus. The 60 MHz 1H spectra for 1 in CDCl3 have been examined with  相似文献   

12.
It is demonstrated that nuclear magnetic resonance (NMR) flow imaging on the basis of phase encoding of flow velocities as well as NMR flow tagging can be successfully employed to visualize laminar but not necessarily fully developed flow of thermally polarized hydrocarbon gases at atmospheric pressure. Gas flow in the nonconsolidated bed composed of solid glass beads was characterized by the displacement NMR spectroscopy on the basis of pulsed-field-gradient-stimulatedecho NMR technique. The effective diffusivity values and aerodynamic dispersion coefficients on the time scale from milliseconds to hundreds of milliseconds were extracted from the experimental data. In a similar experiment with the beds composed of porous silica gel grains, strong adsorption of hydrocarbon gases was observed.  相似文献   

13.
A fast method for quantitative NMR imaging of flow velocities in intact plants is described. The purpose of this method is to observe dynamic changes of flow velocity in the xylem of plants after fast changes of environmental conditions. The spatial image resolution is 47 x 188 micrometer(2) in-plane. The method applies a fast gradient echo sequence (FLASH). Compared to other flow NMR imaging sequences, the imaging time was reduced by a factor of 6 with comparable signal-to-noise ratio. A complete flow measurement consists of a set of 8 different flow weighted images with a total acquisition time of 3.5 min.  相似文献   

14.
(CH(3))(4)NPF(6) is studied by NMR measurements to understand the internal motions and cross relaxation mechanism between the heterogeneous nuclei. The spin lattice relaxation times (T(1)) are measured for (1)H and (19)F nuclei, at three (11.4, 16.1 and 21.34 MHz) Larmor frequencies in the temperature range 350-50K and (1)H NMR second moment measurements at 7 MHz in the temperature range 300-100K employing home made pulsed and wide-line NMR spectrometers. (1)H NMR results are attributed to the simultaneous reorientations of both methyl and tetramethylammonium groups and motional parameters are evaluated. (19)F NMR results are attributed to cross relaxation between proton and fluorine and motional parameters for the PF(6) group reorientation are evaluated.  相似文献   

15.
A T1 minimum at 216 K for Larmor frequency 90 MHz has been detected and for this minimum no analogous T, minimum according to the known quadratic dependence of the Larmor frequency 25 MHz is found. The analysis leads to the conclusion that this T1 minimum is a result of the relaxation of protons via quadrupole nuclei. The Kimmich theoretical treatment of 1H NMR experiments exhibiting the existence of this phenomenon in the case of relaxation of protons of piridinium cations in (C5H5NH)5Bi2Br11 and the estimated averaged quadrupole frequency of interacting quadrupole nuclei has been estimated to be around 71 MHz. Below the phase transition at 118 K a wide symmetric spin-lattice relaxation minimum at 25 MHz is detected and a model of small angle libration of the pyridinium cation has been applied to explain the observed T1 relaxation time minimum.  相似文献   

16.
PFG NMR is employed to perform a comparative study of the filtration of water and propane through model porous media. It is shown that the dispersion coefficients for water are dominated by the holdup effects even in a bed of nonporous glass beads. It is demonstrated that correlation experiments such as VEXSY are applicable to gas flow despite the large diffusivity values of gases. The PFG NMR technique is applied to study the gravity driven flow of liquid-containing fine solid particles through a porous bed. The NMR imaging technique is employed to visualize the propagation of autocatalytic waves for the Belousov-Zhabotinsky reaction which is carried out in a model porous medium. It is demonstrated that the wave propagation velocity decreases as the wave crosses the boundary between the bulk liquid and the flooded bead pack. The images detected during the catalytic hydrogenation of alpha-methylstyrene on a single catalyst pellet at elevated temperatures have revealed that the reaction and the accompanying phase transition alter the distribution of the liquid phase within the pellet.  相似文献   

17.
Electromagnetic resonators consisting of low-loss dielectric material and/or metallic boundaries are widely used in microwave technologies. These dielectric resonators usually have high Q factors and well-defined field distributions. Magnetic resonance imaging was shown as a way of visualizing the magnetic field distribution of the resonant modes of these resonators, if the dielectric body contains NMR sensitive nuclei. Dielectric resonators have also been proposed as RF coils for magnetic resonance experiments. The feasibility of this idea in high-field MR is discussed here. Specifically, the dielectric resonances of cylindrical water columns were characterized at 170.7 MHz (4 T1H Larmor frequency), and evaluated as NMR transmit and receive coils. The dielectric resonance of a cylindrical volume of D2O was used to image a hand at 170.7 MHz. This study demonstrated that MRI is an effective way of visualizing the magnetic field in dielectric structures such as a water cylinder, and can potentially be generalized to solid-state dielectric devices. The possible applications of dielectric resonators other than simple cylindrical volumes in MRI and MR solution spectroscopy at high field strengths are also discussed.  相似文献   

18.
操作参数对PEM燃料电池中水迁移的影响   总被引:4,自引:1,他引:3  
质子膜内水分和阴极多孔电极中液态水含量是PEM燃料电池正常运行的控制因素。本文给出了一个用于研究PEM燃料电池内水迁移的稳态、等温、两相流模型。模型耦合了连续方程、动量守恒方程和物质守恒方程,以及水在质子膜中传递方程。运用试验结果验证了模型的有效性。分析模拟结果表明,增大系统操作压力、升高电池操作温度和降低加湿温度将会使质子膜中水的净迁移通量增大;增大操作压力、降低操作温度和升高加湿温度会增加阴极CTL与GDL界面上液态水含量。  相似文献   

19.
A complete analysis of the 360 MHz 1H NMR spectra of diosmin and hesperidin in DMSO-d6 solution has been performed and the corresponding values for chemical shifts and coupling constants given. Two sets of NMR signals have been detected in aged hesperidin samples, and based on NMR parameters and HPLC data, the second set has been assigned to an hesperidin isomer with a change of the natural configuration at the C2 atom.  相似文献   

20.
The feasibility of gas flow imaging in moderately high magnetic fields employing thermally polarized gases at atmospheric pressures is demonstrated experimentally. Two-dimensional spatial maps of flow velocity distributions for acetylene, propane, and butane flowing along the transport channels of shaped monolithic alumina catalysts were obtained at 7 T by (1)H NMR, with true in-plane resolution of 400 &mgr;m and reasonable detection times. The resolution is shown to be limited by the echo attenuation due to rapid molecular diffusion in the imaging gradients of magnetic field. All gas flow images exhibit flow patterns that are not fully developed, in agreement with the range of Reynolds numbers (190-570) and the length of the sample used in gas flow experiments. The flow maps reveal the highly nonuniform spatial distribution of shear rates within the monolith channels of square cross-section, the kind of information essential for evaluation and improvement of the efficiency of mass transfer in shaped catalysts. The water flow images were obtained at lower Re numbers for comparison. These images demonstrate the transformation of a transient flow pattern observed closer to the inflow edge of a monolith into a fully developed one further downstream. Copyright 2000 Academic Press.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号