首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
To utilize fully modern MALDI-TOF and TOF/TOF mass spectrometers with mass resolution exceeding 10,000 and 2 ppm precision of flight time measurements for high mass accuracy, the model of ion motion used in the mass calibration equation must be expanded. The standard three-term equation providing up to 5-10 ppm (rms) mass accuracy with internal standards was modified with an additional term accounting for the finite rise time of the high-voltage extraction pulse. This new four-term calibration equation minimizes the effect of systematic error resulting from the fact that ion velocities are mass dependent due to the rise time of the extraction pulse. Applying this new calibration equation to a mass spectrum obtained in an axial MALDI-TOF MS containing 70 peaks (sodiated PEG), each with a signal-to-noise ratio greater than 100, a mass accuracy of 1.6 ppm (rms) was obtained over the mass range 1.0-4.0 kDa compared with 3.6 ppm (rms) with the standard three-term equation. The physical basis of the effects of the finite extraction pulse rise time on mass calibration is examined for axial MALDI-TOF mass spectrometers, as well as for orthogonal acceleration TOF mass spectrometers.  相似文献   

2.
3.
The glucuronide conjugates of ketobemidone, norketobemidone and hydroxymethoxyketobemidone were identified in human urine post-intravenous administration of Ketogan Novum. The human urine was extracted on a mixed-mode solid-phase micro-column before analysis with liquid chromatography/electrospray ionization time-of-flight mass spectrometry (LC/ESI-TOF-MS) and tandem MS (MS/MS). Accurate mass and collision-induced dissociation product ion spectra were used for identification of the glucuronide conjugates. Two different TOF mass spectrometers were used and the accurate mass measurements were performed on three separate days with each instrument. The accuracy of the mass measurements was better than 2.1 ppm for two out of three conjugates and the inter-day relative standard deviation was within +/-0.00049%. The MS/MS fragmentation patterns of the conjugates were in accordance with those of the synthetic aglycones and included peaks originating from the [M + H](+) ion of the respective aglycone.  相似文献   

4.
The use of gas chromatography coupled to high‐resolution magnetic sector mass spectrometers (GC‐HRMS) is well established for dioxin and furan analysis. However, the use of gas chromatography coupled to triple quadrupole (MS/MS) and time of flight (TOF) mass spectrometers with atmospheric pressure ionization (API) and traditional electron ionization (EI) for dioxin and furan analysis is emerging as a viable alternative to GC‐HRMS screening. These instruments offer greater versatility in the lab for a wider range of compound identification and quantification as well as improved ease of operation. The instruments utilized in this study included 2 API‐MS/MS, 1 traditional EI‐MS/MS, an API‐quadrupole time of flight mass spectrometer (API‐QTOF), and a EI‐high‐resolution TOF (EI‐HRTOF). This study compared these 5 instruments to a GC‐HRMS using method detection limit (MDLs) samples for dioxin and furan analysis. Each instrument demonstrated acceptable MDL values for the 17 chlorinated dioxin and furans studied. The API‐MS/MS instruments provide the greatest overall improvement in MDL value over the GC‐HRMS with a 1.5 to 2‐fold improvement. The API‐QTOF and EI‐TOF demonstrate slight increases in MDL value as compared with the GC‐HRMS with a 1.5‐fold increase. The 5 instruments studied all demonstrate acceptable MDL values with no MDL for a single congener greater than 5 times that for the GC‐HRMS. All 5 instruments offer a viable alternative to GC‐HRMS for the analysis of dioxins and furans and should be considered when developing new validated methodologies.  相似文献   

5.
Four new 3‐alkyl pyridinium alkaloids, the viscosalines B1 ( 1 a ), B2 ( 1 b ), E1 ( 2 a ), and E2 ( 2 b ), were isolated from the Arctic sponge Haliclona viscosa. The structure elucidation of these isomeric compounds was challenging due to ambiguous fragments that derive during “standard” mass spectrometric fragmentation experiments. The final structure elucidation relied on the use of a combination of synthesis, liquid chromatography, and mass spectrometry. Three different mass spectrometers were used to differentiate between the synthetic structural isomers: a time‐of‐flight (TOF) mass spectrometer and two ion‐trap mass spectrometers with different ion‐transfer technologies (i.e., skimmer versus funnel optics). Although at first none of the spectrometers returned spectra that permitted structure elucidation, all three mass spectrometers provided analysis that successfully differentiated between the isomers after thorough method optimization. The use of in‐source collision‐induced dissociation (CID) with the ion trap and TOF instrument returned the most interesting results. The mode of fragmentation of the viscosalines under different experimental conditions is described herein. After successful optimization of the mass spectrometric method applied, the chromatographic method was improved to distinguish the previously inseparable isomers. Finally, both the liquid chromatography and mass spectrometric methods were applied to the natural products and the results compared to those from the synthetic compounds.  相似文献   

6.
Optimization of mass spectrometers using the adaptive particle swarm algorithm (APSA) is described along with implementations for ion optical simulations and various time-of-flight (TOF) instruments. The need for in situ self optimization is addressed through discussion of the reflectron TOF mass spectrometer (RTOF) on the European Space Agency mission Rosetta. In addition, a tool for optimization of laboratory mass spectrometers is presented and tested on two different instruments. After the application of APSA optimization, a substantial increase in performance for mass spectrometers that have manually been tuned for several weeks or months is demonstrated.  相似文献   

7.
Analysis of pesticide residues in water and food matrices is an active research area closely related to food safety and environmental issues. In this aspect mass spectrometry (MS) coupled to gas chromatography (GC) and liquid chromatography (LC) has been increasingly used in the analysis of pesticide residues in water and food. The increasing interest in application of high‐resolution mass spectrometry with time‐of‐flight (TOF) and hybrid triple quadrupole TOF in pesticide analysis is due to its capability of performing both targeted and nontargeted analysis. This article discusses an overview of the application of GC‐TOF‐MS and LC‐TOF‐MS in water and food matrices.  相似文献   

8.
The Cinchona alkaloids, which include the pharmaceuticals quinine and quinidine, continue to have a wide variety of important uses. A number of different chromatographic procedures have been developed for the qualitative and quantitative analysis of these compounds in a variety of sample matrices. Reversed-phase HPLC using ODS columns in combination with acidic mobile phases, and UV detection, is the most widely used method. Nevertheless, precautions need to be taken due to the strong silanophilic interactions which can occur with these analytes and the column surface, which can lead to poor peak shape and resolution. Different selectivity may be achieved in HPLC separations by use of alternative stationary phases, or by varying mobile phase pH. The specificity of detection systems may be improved by use of photodiode array UV detectors, or especially mass spectrometers. Thin-layer chromatography (TLC) provides a cheap alternative analytical method, which is especially useful for qualitative analysis. High-performance TLC, gas chromatography, capillary electrophoresis and capillary electrochromatography are all methods which after some development, could prove useful for Cinchona alkaloid separations.  相似文献   

9.
Summary Using packed column supercritical fluid chromatography on-line with capillary gas chromatography, gasolines have been characterized with respect to the separation of hydrocarbon classes as a group as well as a detailed fingerprinting of individual components within the classes. Using selective heartcutting, specific gasoline peaks were transferred to the capillary gas chromatograph as they eluted from the supercritical fluid chromatograph. Quantitative information was collected simultaneously from the flame ionization detectors that were used on both chromatographs. This report will describe the operational chromatographic conditions that were used for gasoline separations as well as provide results of quantitative heartcut reproducibility experiments of gasolines and hydrocarbon standards.
Charakterisierung von Benzinen durch on-line-Kombination von multidimensionaler Chromatographie mit überkritischen fluiden Phasen und Capillar-Gas-Chromatographie
  相似文献   

10.
Pressure‐sensitive adhesives (PSA) are used to manufacture labels that are applied directly on the food. These adhesives could contain not only intentionally added compounds (IAS) to the adhesive formula but also non‐intentionally added substances (NIAS), due to the impurities from the raw materials used, decomposition of the initial components or from chemical interactions between them. These compounds could migrate to the food and contaminate it. In this study, gas chromatography coupled with mass spectrometry (GC‐MS/Q) and atmospheric pressure gas chromatography coupled to a quadrupole hyphenated to a time of flight mass spectrometer (APGC‐MS/Q‐TOF) have been used for identification of unknown compounds and NIAS coming from a PSA. Seven compounds were identified by GC‐MS/Q, and other eight compounds remained initially unknown. The structure of these eight new compounds was elucidated by working with the spectra obtained by APGC‐MS/Q‐TOF. Finally, two different migration studies were carried out. The first one with Tenax as solid food simulant in contact with the paper label containing the adhesive and the second one with isooctane filled in a natural pork intestine where the label containing the adhesive was applied on the external side. The results are shown and discussed. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
The mass resolution of a time-of-flight (TOF) mass spectrometer is directly proportional to its total flight pathlength. Multi-turn or multi-passage ion optical geometries are necessary to obtain fight distances of sufficient length within reasonable size limitations. We have investigated ion optics for a multi-turn TOF mass spectrometer with electrostatic sectors. The concept of 'perfect' focusing conditions is introduced. Furthermore, a new type of multi-turn TOF mass spectrometer, the MULTUM Linear plus, was developed. It consists of four cylindrical electric sectors and 28 electric quadrupole lenses. It has a vacuum chamber 60 x 70 x 20 cm in size. Mass resolution is demonstrated to increase according to the number of ion cycles. A mass resolution of 350 000 (m/z = 28, FWHM) was achieved after 501.5 cycles. The MULTUM Linear plus analyzer is not simple, however; 28 electric quadrupole lenses are used. In order to reduce the number of ion optical parts, an improved multi-turn TOF mass spectrometer, the MULTUM II, consisting of only four toroidal electric sectors, was also developed. The possibility of tandem mass spectrometric applications using multi-turn TOF mass spectrometers is also discussed.  相似文献   

12.
Metabolism studies play an important role at various stages of drug discovery and development. Liquid chromatography combined with mass spectrometry (LC/MS) has become a most powerful and widely used analytical tool for identifying drug metabolites. The suitability of different types of mass spectrometers for metabolite profiling differs widely, and therefore, the data quality and reliability of the results also depend on which instrumentation is used. As one of the latest LC/MS instrumentation designs, hybrid ion trap/time‐of‐flight MS coupled with LC (LC‐IT‐TOF‐MS) has successfully integrated ease of operation, compatibility with LC flow rates and data‐dependent MSn with high mass accuracy and mass resolving power. The MSn and accurate mass capabilities are routinely utilized to rapidly confirm the identification of expected metabolites or to elucidate the structures of uncommon or unexpected metabolites. These features make the LC‐IT‐TOF‐MS a very powerful analytical tool for metabolite identification. This paper begins with a brief introduction to some basic principles and main properties of a hybrid IT‐TOF instrument. Then, a general workflow for metabolite profiling using LC‐IT‐TOF‐MS, starting from sample collection and preparation to final identification of the metabolite structures, is discussed in detail. The data extraction and mining techniques to find and confirm metabolites are discussed and illustrated with some examples. This paper is directed to readers with no prior experience with LC‐IT‐TOF‐MS and will provide a broad understanding of the development and utility of this instrument for drug metabolism studies. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

13.
Peaks originating from unknown compounds on stainless steel plates used in matrix-assisted laser desorption/ionization (MALDI) mass spectrometers are observed around m/z 304.3, 332.3, 360.4, and 388.4 regardless of the matrix and/or solvent, and are even observed with bare plates. These peaks were characterized using three different types of MALDI-MS instrumentation: MALDI-TOF MS, MALDI-TOF/TOF MS, and MALDI-FTMS. The fragmentation data from MALDI-TOF/TOF MS and accurate mass determination by MALDI-FTMS enabled identification of the chemical formulae and structures. The unknown compounds are, in fact, likely benzylalkylmethylammonium salts, as confirmed by closely matching fragmentation patterns with a commercially available benzalkonium chloride.  相似文献   

14.
The coupling of ion mobility spectrometry (IMS) instruments with mass spectrometers has been described since early in IMS development, most commonly with quadrupole mass analyzers. The recent development of IMS with time-of-flight (TOF) instruments has demonstrated that the time compatibility (IMS milliseconds and TOFMS microseconds) of the two techniques enables rapid two-dimensional separations to be performed, theoretically in the order of seconds for a complete analysis. This study presents a unique way to operate a traditional IMS/QMS system to attain separations similar to those achieved with IMS/TOF. For this new approach, the quadrupole was slowly scanned in the single-ion monitoring mode while IMS spectra were continually embedded in each m/z step. In this way, two-dimensional separations (IMS drift times and m/z) were obtained using the traditional IMS/QMS arrangement. An example of a five amino acid separation (quadrupole scan of 40 m/z values at a rate of approximately 7 steps/min) led to a complete two-dimensional analysis within 6 min, comparable to rapid chromatographic separations with mass spectrometry. Proposed approaches to reduce the analysis time are discussed and a reduction in the analysis time to less than 1 min is feasible when the IMS/QMS separation conditions are optimized.  相似文献   

15.
Four new 3-alkyl pyridinium alkaloids, the viscosalines?B(1) (1?a), B(2) (1?b), E(1) (2?a), and E(2) (2?b), were isolated from the Arctic sponge Haliclona viscosa. The structure elucidation of these isomeric compounds was challenging due to ambiguous fragments that derive during "standard" mass spectrometric fragmentation experiments. The final structure elucidation relied on the use of a combination of synthesis, liquid chromatography, and mass spectrometry. Three different mass spectrometers were used to differentiate between the synthetic structural isomers: a time-of-flight (TOF) mass spectrometer and two ion-trap mass spectrometers with different ion-transfer technologies (i.e., skimmer versus funnel optics). Although at first none of the spectrometers returned spectra that permitted structure elucidation, all three mass spectrometers provided analysis that successfully differentiated between the isomers after thorough method optimization. The use of in-source collision-induced dissociation (CID) with the ion trap and TOF instrument returned the most interesting results. The mode of fragmentation of the viscosalines under different experimental conditions is described herein. After successful optimization of the mass spectrometric method applied, the chromatographic method was improved to distinguish the previously inseparable isomers. Finally, both the liquid chromatography and mass spectrometric methods were applied to the natural products and the results compared to those from the synthetic compounds.  相似文献   

16.
The feasibility of ultra thin-layer chromatography atmospheric pressure matrix-assisted laser desorption ionization mass spectrometry (UTLC-AP-MALDI-MS) has been studied in the analysis of small molecules. Because of a thinner adsorbent layer, the monolithic UTLC plates provide 10-100 times better sensitivity in MALDI analysis than conventional high performance thin-layer chromatography (HPTLC) plates. The limits of detection down to a low picomole range are demonstrated by UTLC-AP-MALDI-MS. Other advantages of UTLC over HPTLC include faster separations and lower solvent consumption. The performances of AP-MALDI-MS and vacuum MALDI-MS have been compared in the analysis of small drug molecules directly from the UTLC plates. The desorption from the irregular surface of UTLC plates with an external AP-MALDI ion source combined with an ion trap instrument provides clearly less variation in measurements of m/z values when compared with a vacuum MALDI-time-of-flight (TOF) instrument. The performance of the UTLC-AP-MALDI-MS method has been applied successfully to the purity analysis of synthesis products produced by solid-phase parallel synthesis method.  相似文献   

17.
Analysis of trace levels of carbohydrate monomers in complex matrices requires excellent discrimination of the peaks of interest from background noise. Minimizing contaminating peaks introduced during sample preparation and chromatography is extremely important. However, the exquisite selectivity of the mass spectrometer is essential as a chromatographic detector in this regard. Traditionally gas chromatography-mass spectrometry (GC-MS) has been the method of choice for trace analysis of derivatized carbohydrates. Recent improvements in commercial tandem mass spectrometers (MS-MS) are encouraging the use of GC-MS-MS for improved specificity in trace analysis. There has also been an explosion in applications of electrospray ionization (ESI) for sensitive introduction of polar molecules (including sugars) into the mass spectrometer. This has encouraged ongoing developments in high-performance liquid chromatography-mass spectrometry (LC-MS) and MS-MS of underivatized carbohydrates. This has the potential to dramatically simplify sample preparation. However, as yet LC-MS and MS-MS do not match the sensitivity of GC-MS or GC-MS-MS. Developments in analysis of sugar monomers from complex matrices using chromatography (GC/LC) in conjunction with mass spectrometry (MS, MS-MS) or stand-alone MS-MS are discussed.  相似文献   

18.
Capillary separations interfaced to tandem mass spectrometry provide a very powerful tool for the characterization of biological macromolecules such as proteins and peptides. The development of real time data-dependent data acquisition has further enhanced the capability of this method. However, the application of this technique to fast capillary separations has been limited by the relatively slow spectral acquisition speed available on scanning mass spectrometers. In this work, an ion trap storage/reflectron time-of-flight mass spectrometer (IT/reTOF-MS) has been used as an on-line tandem mass detector for capillary high-performance liquid chromatography (HPLC) and capillary electrophoresis (CE) separations of peptide mixtures including a protein digest. By taking advantage of the nonscanning property of the time-of-flight mass spectrometer, a fast spectral acquisition rate has been achieved. This fast spectral acquisition rate, combined with a new protocol that speeds up tickle voltage optimization, has provided MS/MS spectra for multiple components in a hemoglobin digest during one liquid chromatography/mass spectrometry/mass spectrometry (LC/MS/MS) run. Further, the IT/reTOF-MS has the speed to provide MS/MS spectra for multiple components in a CE separation of a synthetic peptide mixture within one CE/MS/MS run.  相似文献   

19.
Yang M  Sun J  Lu Z  Chen G  Guan S  Liu X  Jiang B  Ye M  Guo DA 《Journal of chromatography. A》2009,1216(11):2045-2062
Traditional Chinese medicine (TCM) is commonly considered to operate due to the synergistic effects of all the major and minor components in the medicines. Hence sensitive and comprehensive analytical techniques are needed to acquire a better understanding of the pharmacological basis of the herb and to enhance the product quality control. The present review mainly focuses on the phytochemical analysis of TCMs using high-performance liquid chromatography coupled with mass spectrometry (HPLC-MS). Atmospheric pressure chemical ionization (APCI) and electrospray ionization (ESI) are the two commonly used ion sources. Triple quadrupole, ion trap (IT), Fourier transform ion cyclotron resonance (FTICR) and time-of-flight (TOF) mass spectrometers are used as on-line analyzer. The relationship between structural features and fragmentation patterns should be investigated as thoroughly as possible and hence be applied in the on-line analysis to deduce the structures of detected peaks. Characteristic fragmentation behaviors of the reference standards, as well as information regarding polarity obtained from retention time data, on-line UV spectra, data from the literature and bio-sources of the compounds allowed the identification of the phytochemical constituents in the crude extracts. Although a mass spectrometer is not a universal detector, high-performance liquid chromatography coupled with multistage mass spectrometry (HPLC-MS(n)) technique was still proved to be a rapid and sensitive method to analyze the majority of the many constituents in herbal medicines, particularly for the detection of those present in minor or trace amounts. The methods established using HPLC-MS techniques facilitate the convenient and rapid quality control of traditional medicines and their pharmaceutical preparations. However, the quantitative analysis is not the topic of this review.  相似文献   

20.
A one- or two-dimensional high performance liquid chromatography system for electrospray ionization mass spectrometers has been developed that is optimized for ion exchange and reversed phase separations. A unique and simple valve configuration permits the use of a variety of non-volatile salts; ammonium sulfate was used in an example of strong cation exchange separations. The system was designed and evaluated for both micro- and nanoflow chromatography. The peptide detection limit was approximately 100 fmol for micro- and 20 fmol for nanoflow, demonstrating the concentration and mass sensitivity improvements expected with nanoelectrospray ionization. The 1D/2D-HPLC MS system is fully automated for routine peptide analyses, compatible with direct injection of proteolytic digests, and exhibits chromatographic reproducibility and sensitivity. Software permits operator selection of either a 1D or 2D configuration with corresponding system parameters as required for individual samples. The hardware elements and resulting performance are described in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号