首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
In this study, the pulsed laser ablation of RuO2 and SrRuO3 (SRO) is investigated by observing the fluorescence from excited atoms in the plume by using a framing streak camera. Vaporization, phase explosion and boiling are suggested to play the main roles in the processes for the interaction between the laser beam and target. Collisions and adiabatic expansion are also suggested before particles move forward with shifted Maxwellian spatial distribution. In O2 pressure, numerous collisions between fast and slow atoms occur and result in the exchange of speeds. The structural and electrical (conductivity and work-function) properties of RuO2 and SRO thin films are measured. Epitaxial SRO growth was obtained at growth temperatures down to 350 °C. Ferroelectric and high- dielectric thin-film capacitors with RuO2 or SRO thin film electrode are also studied.  相似文献   

2.
Pb1-x Srx Te thin films with different strontium (St) compositions axe grown on BaF2 (111) substrates by molecular beam epitaxy (MBE). Using high resolution x-ray diffraction (HPLXRD), we obtain Pb1-xSrxTe lattice constants, which vary in the range 6.462-6.492 A. According to the Vegard law and HRXRD data, Sr compositions in Pb1-xSrxTe thin films range from 0.0-8.0%. The Pb1-xSrxTe refractive index dispersions are attained from infrared transmission spectrum characterized by Fourier transform infrared (FTIR) transmission spectroscopy. It is found that refractive index decreases while Sr content increases in Pb1-xSrx Te. We also simulate the Pb1-xSrxTe transmission spectra theoretically to obtain the optical band gap energies which range between 0.320 e V and 0.449 e V. The simulated results are in good agreement with the FTIR data. Finally, we determine the relation between Pb1-xSrx Te band gap energies and Sr compositions (Eg = 0.320+0.510x-0.930x^2 +184x^3 (eV)).  相似文献   

3.
We report on the deposition of SrBi2Nb2O9 and Sr1-xNaxBi2-xTexNb2O9 ferroelectric thin films on Pt/TiO2/SiO2/(100)Si substrates using the pulsed laser deposition technique. Deposition on substrates heated to 600-700 °C produces {11l} film texture and dense films with grain sizes up to about 500 nm. The recrystallization at 700 °C of amorphous films deposited at lower temperatures enhances the contribution of the {100} and {010} orientations. These films show smaller grain size, namely 50-100 nm. {11l}-oriented Sr1-xNaxBi2-xTexNb2O9 films have remnant polarization Prۆ 7C/cm2, a coercive field Ec䏐 kV/cm and dielectric constant, )𪓴. The low value of Pr is probably related to the low fraction of grains with the ferroelectric axis in the direction of the applied field, E. The recrystallized films have more grains with the ferroelectric axis parallel to E; however, they have a low resistivity which so far has prevented electrical characterization.  相似文献   

4.
The local polarization state and the electromechanical properties of ferroelectric thin films can be probed via the converse piezoelectric effect using scanning force microscopy (SFM) combined with a lock-in technique. This method, denominated as piezoresponse SFM, was used to characterize at the nanoscale level ferroelectric SrBi2Ta2O9 and Bi4Ti3O12 thin films, grown by pulsed laser deposition. Two types of samples were studied: polycrystalline films, with grains having random orientations, and epitaxial films, consisting of (100)orth- or (110)orth-oriented crystallites, 100 nm to 2 7m in lateral size, which are embedded into a (001)-oriented matrix. The ferroelectric domain structure was imaged and the piezoelectric response under different external conditions was locally measured for each type of sample. Different investigation procedures are described in order to study the ferroelectric properties via the electromechanical response. A distinct ferroelectric behavior was found for single grains of SrBi2Ta2O9 as small as 200 nm in lateral size, as well as for 1.2 7m쏿 nm crystallites of Bi4Ti3O12. By probing separately the crystallites and the matrix the investigations have demonstrated at the nanoscale level that SrBi2Ta2O9 has no spontaneous polarization along its crystallographic c-axis, whereas Bi4Ti3O12 exhibits a piezoelectric behavior along both the a- and c-directions. The electrostriction coefficients were estimated to be 3᎒-2 m4/C2 for polycrystalline SrBi2Ta2O9 and 7.7᎒-3 m4/C2 for c-orientedBi4Ti3O12. Quantitative measurements at the nanoscale level, within the experimental errors give the same values for remanent polarization and coercive field as macroscopic ferroelectric measurements performed on the same samples.  相似文献   

5.
Crystallization of SrBi2Ta2O9 (SBT) thin films was studied as a function of viscosity of bismuth precursor and baking temperature, in order to fabricate capacitors with improved ferroelectric properties. SBT thin films were deposited on to Pt substrates using a chemical solution deposition (CSD) technique. Post-deposition anneal at 750 °C for 1 h in oxygen atmosphere revealed a significant influence of baking temperature and the viscosity of bismuth precursor on the microstructure and the ferroelectric properties of SBT thin films. A high baking temperature (350 °C) and a low viscosity of bismuth precursor (8 cp) yielded larger amounts of Bi2O3 secondary phase, smaller SBT grains (104 nm), and lower remanent polarization (Pr=2.0 7c/cm2). Additionally, these films exhibited a very high rate of ageing (>45% reduction in Pr after 7 days). A modified CSD process is suggested, which could suppress the formation of Bi2O3 secondary phase. Films fabricated using modified CSD technique exhibited a much larger grain size of 165 nm, higher Pr of 7.2 7c/cm2, and significantly improved ageing characteristics (<1% reduction in Pr after 7 days). A qualitative model to describe the ageing in SBT-based capacitors is also suggested.  相似文献   

6.
Preferentially (105)-oriented SrxBi2+yTa2O9 (SBT) thin films on SiN/SiO2/p-Si(100) prepared by the pulsed laser deposition (PLD) method at a temperature as low as 400 °C, which is the lowest process temperature for growing SBT ferroelectric thin films on a silicon nitride film. Excess Bi promotes crystallization of the SBT film. A metal-ferroelectric-nitride-oxide-semiconductor (MFNOS) structure, which is very important in ferroelectric gate memory FET, has been fabricated by depositing the SBT film on silicon nitride-oxide-silicon. The MFNOS structures show capacitance-voltage (C-V) hysteresis corresponding to ferroelectric hysteresis. A memory window of the C-V hysteresis is improved, to be as high as 3.5 V in the SBT(400 nm)/SiNx(7 nm)/SiO2(18 nm)/Si compared with the window of 2.7 V in the SBT(400 nm)/SiO2(27 nm)/Si (MFOS), where the thicknesses of their insulator layers are nearly the same. Little degradation is induced in the C-V characteristics of the SiNx/SiO2/p-Si structure when depositing the SBT film by PLD at low temperature. It is also found that the SiNx layer acts as a diffusion barrier against component atoms in the SBT film during its deposition. Finally, the MFNOS structure prepared at the low temperature is very promising for a next-generation ferroelectric gate memory FET.  相似文献   

7.
Zn1-xMnxO (x = O.Olq3.1) thin films with a Curie temperature above 300K are deposited on Al2O3 (0001) substrates by pulsed laser deposition. X-ray diffraction (XRD), ultraviolet (UV)-visible transmission and Raman spectroscopy are employed to characterize the microstructural properties of these films. Room temperature ferromagnetism is observed by superconducting quantum interference device (SQUID). The results indicate that Mn doping introduces the incorporation of Mn^2+ ions into the ZnO host matrix and the insertion of Mn^2+ ions increases the lattice defects, which is correlated with the ferromagnetism of the obtained films. The doping concentration is also proven to be a crucial factor for obtaining highly ferromagnetic Zn1-xMnxO films.  相似文献   

8.
New methods for fabricating highly 𘚡¢-oriented and complete 𘜏¢-textured Pb(Ta0.05Zr0.48Ti0.47)O3 (PTZT) films on Pt/TiO2/SiO2/Si(001) substrates by pulsed-laser deposition have been developed using conductive oxide La0.25Sr0.75CoO3 and SrRuO3 electrodes. The 𘚡¢-preferred orientated PTZT ferroelectric capacitor was not subjected to loss of its polarization after 1᎒10 switching cycles at an applied voltage of 5 V and a frequency of 1 MHz, and the 𘜏¢-textured PTZT film capacitor retains 94.7% of its polarization after 1.5᎒10 switching cycles at 5 V and 50 kHz. The PTZT capacitors using these conductive oxide electrodes have low leakage current dominated by Schottky field emission mechanism.  相似文献   

9.
杨录 《中国物理快报》2010,27(7):218-220
Deep-trap properties of high-dielectric-constant (k) HfO2 thin films are investigated by deep-level transient spectroscopy and capacitance-voltage methods. The hole traps of the HfO2 dielectric deposited on a p-type Si substrate by sputtering are investigated in a metal-oxide-semiconductor structure over a temperature range of 300-500K. The potential depth, cross section and concentration of hole traps are estimated to be about 2.5eV, 1.8 ×10^-16 cm^2 and 1.0 × 10^16 cm^-3, respectively.  相似文献   

10.
Hydrogen ions are implanted into Pb(Zro.3Tio.7)03 1014 ions/cm^2. Pseudo-antiferroelectric behaviour in thin films at the energy of 40keV with a flux of 5 x the implanted thin films is observed, as confirmed by the measurements of polarization versus electric hysteresis loops and capacitance versus voltage curves. X-ray diffrac- tion patterns show the film structures before and after H+ implantation both to be perovskite of a tetragonal symmetry. These findings indicate that hydrogen ions exist as stable dopants within the films. It is believed that the dopants change domain-switching behaviour via the boundary charge compensation. Meanwhile, time dependence of leakage current density after time longer than lOs indicates the enhancement of the leakage cur- rent nearly in one order for the implanted film, but the current at time shorter than i s is mostly the same as that of the original film without the ionic implantation. The artificial tailoring of the antiferroelectric behaviour through H+ implantation in ferroelectric thin films is finally proven to be achievable for the device application of high-density charge storage.  相似文献   

11.
Using the first-principles calculations based on density functional theory, the important role of electrode materials in determining the interfacial, ferroelectric stability and magnetoelectric properties in BaTiO3-based multiferroic tunnel junctions (MFTJs) have been investigated comparatively. It is found that the SrO–TiO2 interface of MFTJs with oxide electrode SrRuO3 is the most favorable interfacial structure. The average ferroelectric polarizations of MFTJs with electrode Co, FeCo and SrRuO3 are 25, 36 and 0 μC/cm2, respectively. The using of alloy electrode FeCo is more contributed to ferroelectric stability and the enhancement of magnetoelectric coupling of BaTiO3-based MFTJs. We expect our findings can provide an essential evaluation for the selection of electrode materials in spintronic storage devices.  相似文献   

12.
We have carried out a detailed investigation on the size effect on SrRuO3/BaTiO3/SrRuO3 ferroelectric ultrathin film capacitors with film thickness fully strained with a SrTiO3 substrate. We employ the transverse field Ising model, taking into account the incomplete charge compensation of the realistic SrRuO3 electrode and the misfit strain imposed by the SrTiO3 substrate in the Hamiltonian, to quantitatively explain the experimental observation in the literature. It is found that BaTiO3 ultrathin films between two metallic electrodes lose their ferroelectric properties below a critical thickness of about 4.17 nm due to the enhancement of the quantum effect under the influence of the incomplete charge compensation of the electrode.  相似文献   

13.
Epitaxial SrBi2Ta2O9 (SBT) thin films with well-defined (116) orientation have been grown by pulsed laser deposition on Si(100) substrates covered with an yttria-stabilized ZrO2 (YSZ) buffer layer and an epitaxial layer of electrically conductive SrRuO3. Studies on the in-plane crystallographic relations between SrRuO3 and YSZ revealed a rectangle-on-cube epitaxy with respect to the substrate. X-ray diffraction pole figure measurements revealed well-defined orientation relations, viz. SBT(116)SrRuO3(110)YSZ(100)Si(100), SBT[110]SrRuO3[001], and SrRuO3[111]YSZ[110]Si[110].  相似文献   

14.
A novel off-axis pulsed-laser deposition (PLD) system for ferroelectric oxide thin films has been developed. The substrates are mounted "upside-down" and are rotating. The maximum substrate size is 2 inches in diameter. The optical and structural properties of the grown BaTiO3 films are compared to the films produced by an on-axis PLD system. The stoichiometry and thickness were checked with Rutherford backscattering spectrometry (RBS). The crystalline quality and orientation were investigated with X-ray diffraction (XRD) and Rutherford backscattering spectrometry in channeling configuration (RBS/C). Using atomic force microscopy, the rms surface roughness was measured. The BaTiO3 films grown on MgO form a planar optical waveguide. The optical losses and the refractive indices of these waveguides were determined with a prism coupling setup. Films grown on 10᎒ mm2 MgO (100) substrates in on-axis geometry show optical waveguide losses less than 3 dB/cm.  相似文献   

15.
A cruciform cavity is presented for multi-wavelength laser generation. On the basis of considering the optimal power ratio and good spatial overlap of the two fundamental beams, the maximum output power of 589 nm laser reaches 3.5 W when the pumping power of Nd:YAG A and Nd:YAG B are 311.5 W and 261.8 W, respectively. At the same time, the other wavelength lasers are also obtained with the output power distribution of 2.5 W at 66Onto, 15 W at 532nm, lOOmW at 1319nm and 240mW at 1064nm. The corresponding beam quality factors are M^2 x = 4.93, M^2 y = 5.01 at 589nm, M^2z = 4.51, M^2 y = 4.85 at 660hm, and M^2 x = 4.12, M^2 y = 3.96 at 532nm, respectively. The instabilities of the three visible lights are measured, which are also less than 2% within three hours.  相似文献   

16.
Ferroelectric Pb1−xy Ca x Sr y TiO3 thin films (denoted by PCST90, PCST70, and PCST30) were deposited on the Pt/Ti/SiO2/Si substrates by a chemical solution deposition method. Their properties were investigated from the viewpoint of crystal structure, microstructure, dielectric, and ferroelectric properties. X-ray diffraction patterns revealed the formation of PCST90, PCST70, and PCST30 thin films without any secondary phases. Infrared and Raman spectroscopy results show that a gradual phase transition from tetragonal to pseudocubic or cubic perovskite structure may occur in PCST thin films with the simultaneous increase of Ca2+ and Sr2+ contents. Both substitution of isovalent Ca2+ and Sr2+ at Pb2+-site enhanced the dielectric constant and reduced the remnant polarization. In addition, ferroelectric test analyses show that the PCST thin films undergo a ferroelectric-to-paraelectric phase transformation with an amount of Pb2+, Ca2+, and Sr2+ at 30%, 35%, and 35% mol, respectively. Hence, the absence of ferroelectric property may be attributed to a decreasing of the octahedron distortion in the perovskite structure accompanied by a weakening of long-range ferroelectric order.  相似文献   

17.
We have applied the theory of the single-particle Schrodinger fluid to the nuclear collective motion of axially deformed nuclei. A counter example of an arbitrary number of independent nucleons in the anisotropic harmonic oscillator potential at the equilibrium deformation has been also given. Moreover, the ground states of the doubly even nuclei in the s-d shell 20Ne,24Mg,28Si,32S and 36Ar are constructed by filling the single particle states corresponding to the possible values of the number of quanta of excitations nx,ny, and nz. Accordingly, the cranking-model, the rigid-body model and the equilibrium-model moments of inertia of these nuclei are calculated as functions of the oscillator parameters ωxyand ωz which are given in terms of the non deformed value ω00 , depending on the mass number A, the number of neutrons N, the number of protons Z, and the deformation parameter β. The calculated values of the cranking-model moments of inertia of these nuclei are in good agreement with the corresponding experimental values and show that the considered axially deformed nuclei may have oblate as well as prolate shapes and that the nucleus 24Mg is the only one which is highly deformed. The rigid body model and the equilibrium model moments of inertia of the two nuclei 20Ne and 24Mg are also in good agreement with the corresponding experimental values.  相似文献   

18.
The polycrystalline ruthenium films are grown on TaN substrates by atomic layer deposition (ALD) using bis(cyclopentadienyl) ruthenium [RuCp2] and oxygen as ruthenium precursor and reactant respectively at a deposition temperature of 330℃. The low-energy Ar ion bombardment and Ru pre-deposition are performed to the underlying TaN substrates before ALD process in order to improve the Ru nucleation. X-ray diffraction, x-ray photoelectron spectroscopy, scanning electron microscopy and atomic force microscopy are carried out to characterize the properties of ALD Ru films. The results show that the nucleation density of Ru films with Ar^+ bombardment to the underlying TaN substrates is much higher than that of the ones without any pretreatment. The possible reasons are discussed.  相似文献   

19.
《Current Applied Physics》2015,15(5):584-587
We investigated ferroelectric characteristics of BiFeO3 (BFO) thin films on SrRuO3 (SRO)/yttria-stabilized zirconia (YSZ)/glass substrates grown by pulsed laser deposition. YSZ buffer layers were employed to grow highly crystallized BFO thin films as well as SRO bottom electrodes on glass substrates. The BFO thin films exhibited good ferroelectric properties with a remanent polarization of 2Pr = 59.6 μC/cm2 and fast switching behavior within about 125 ns. Piezoelectric force microscopy (PFM) study revealed that the BFO thin films have much smaller mosaic ferroelectric domain patterns than epitaxial BFO thin films on Nb:SrTiO3 substrates. Presumably these small domain widths which originated from smaller domain energy give rise to the faster electrical switching behavior in comparison with the epitaxial BFO thin films on Nb:SrTiO3 substrates.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号