首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogenous porous layer heated from below. The linear stability results are presented for both the synchronous and subharmonic solutions and the exact point for the transition from synchronous to subharmonic solutions is computed. It is also demonstrated that increasing the excitation frequency rapidly stabilizes the convection up to the transition point from synchronous to subharmonic convection. Beyond the transition point, the effect of increasing the frequency is to slowly destabilize the convection.  相似文献   

2.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogeneous cylindrical porous layer heated from below. The linear stability results show that increasing the frequency of vibration stabilizes the convection. In addition the aspect ratio of the porous cylinder is shown to influence the stability of convection for all frequencies analysed. It was also observed that only synchronous solutions are possible in cylindrical porous layers, with no transition to subharmonic solutions as was the case in Govender (2005a) [Transport Porous Media 59(2), 227–238] for rectangular layers or cavities.  相似文献   

3.
The linear stability theory is used to investigate analytically the effect of a permeable mush–melt boundary condition on the stability of solutal convection in a mushy layer of homogenous permeability at the near eutectic (solid) limit. The results clearly show that, in contrast to the impermeable mush–melt interface boundary condition, the application of the permeable mush–melt interface boundary condition destabilizes the convection in a mushy layer.  相似文献   

4.
We investigate the steady state convection amplitude for solutal convection occurring during the solidification of a rotating mushy layer in a binary alloy system for a new Darcy equation formulation. We adopt a large far field temperature and assume that the initial composition is very close to the eutectic composition. The linear stability analysis showed that rotation stabilised solutal convection. The results of the weak non-linear analysis of stationary convection indicates the presence of Hopf bifurcation, associated with the oscillatory mode, developing at Ta = 3.  相似文献   

5.
The linear stability theory is used to investigate analytically the effects of gravity modulation on convection in a homogenous porous layer heated from below. The gravitational field consists of a constant part and a sinusoidally varying part, which is tantamount to a vertically oscillating porous layer subjected to constant gravity. The linear stability results are presented for the specific case of low amplitude vibration for which it is shown that increasing the frequency of vibration stabilises the convection.  相似文献   

6.
Instability of a plane horizontal layer of an incompressible binary gas mixture stratified in the gravity field under the action of a transverse temperature gradient modulated in time is studied. The case of solid impermeable boundaries of the layer, where the flux of matter vanishes, is considered. The analysis is based on the Floquet method applied to linearized equations of convection in the Boussinesq approximation. It is shown that there are regions of parametric instability at finite frequencies. In addition to the synchronous or subharmonic response to an external action, the instability may be related to quasiperiodic disturbances. Depending on the amplitude and frequency, modulation can stabilize the unstable basic state and also destabilize the equilibrium of the fluid. The threshold values of convection for modulations of temperature and translational vertical vibrations are compared.  相似文献   

7.
We consider vibration effects on the stability of solutal convection in a mushy layer being cast in a cylindrical geometry. The near eutectic limit is applied and moderate Vadasz numbers are considered to retain the second-order time derivative in the Darcy equation. Since small to moderate radii casting crucibles are the current area of interest, only synchronous modes are analyzed. The results indicate that the presence of vibration in solidifying mushy layers stabilizes the convection, and provides a quantification of the Rayleigh number associated with solutal convection. Of particular interest is the fact that in solidifying systems, the Rayleigh numbers are significantly smaller than that of a passive porous layer.  相似文献   

8.
The coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for moderate Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that only stationary convection is possible for moderate Stefan numbers. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilizing effect on convection. It was also discovered that fot Taylor numbers larger than three (i.e., Ta > 3),increasing the retardability coefficient (hence increasing the solid fraction) destablished the convection.  相似文献   

9.
The Coriolis effect on a solidifying mushy layer is considered. A near-eutectic approximation and large far-field temperature is employed in the current study for large Stefan numbers. The linear stability theory is used to investigate analytically the Coriolis effect on convection in a rotating mushy layer for a new formulation of the Darcy equation. It was found that a large Stefan number scaling allows for the presence of both the stationary and oscillatory modes of convection. In contrast to the problem of a stationary mushy layer, rotating the mushy layer has a stabilising effect on convection. It was observed that increasing the Taylor number or the Stefan number encouraged the oscillatory mode of convection.  相似文献   

10.
The linear stability of the double-diffusive convection in a horizontal porous layer is studied considering the upper boundary to be open. A horizontal temperature gradient is applied along the upper boundary. It is assumed that the viscous dissipation and Soret effect are significant in the medium. The governing parameters are horizontal Rayleigh number (\(Ra_\mathrm{H}\)), solutal Rayleigh number (\(Ra_\mathrm{S}\)), Lewis number (Le), Gebhart number (Ge) and Soret parameter (Sr). The Rayleigh number (Ra) corresponding to the applied heat flux at the bottom boundary is considered as the eigenvalue. The influence of the solutal gradient caused due to the thermal diffusion on the double-diffusive instability is investigated by varying the Soret parameter. A horizontal basic flow is induced by the applied horizontal temperature gradient. The stability of this basic flow is analyzed by calculating the critical Rayleigh number (\(Ra_\mathrm{cr}\)) using the Runge–Kutta scheme accompanied by the Shooting method. The longitudinal rolls are more unstable except for some special cases. The Soret parameter has a significant effect on the stability of the flow when the upper boundary is at constant pressure. The critical Rayleigh number is decreasing in the presence of viscous dissipation except for some positive values of the Soret parameter. How a change in Soret parameter is attributing to the convective rolls is presented.  相似文献   

11.
Stability of the flow that arises under the action of a gravity force and streamwise finitefrequency vibrations in a nonuniformly heated inclined liquid layer is studied. By the Floquet method, linearized convection equations in the Boussinesq approximation are analyzed. Stability of the flow against planar, spiral, and threedimensional perturbations is examined. It is shown that, at finite frequencies, there are parametricinstability regions induced by planar perturbations. Depending on their amplitude and frequency, vibrations may either stabilize the unstable ground state or destabilize the liquid flow. The stability boundary for spiral perturbations is independent of vibration amplitude and frequency.  相似文献   

12.
We consider the effects of rotation in a mushy layer being cast from a vertical surface where the effects of Coriolis acceleration, gravity and centrifugal effects are included. It is demonstrated that the Coriolis acceleration and gravity play a passive role in convection and are excluded from the stability criteria. The stability criteria is presented as the critical centrifugal Rayleigh numbers referenced for locations far away (start of solidification) and close to (nearing end of solidification) the axis or rotation.  相似文献   

13.
The electrothermoconvective instability of a plane horizontal layer of weakly conducting fluid in a modulated vertical electric field is investigated. The analysis is based on the electrohydrodynamic approximation. The stability threshold in the linear approximation is found using Floquet’s theory. The effect of periodic modulation on the fluid behavior is studied in both the presence and the absence of the constant component of the electric field. It is shown that modulation can stabilize the unstable ground state or destabilize fluid equilibrium, depending on the amplitude and frequency. In addition to a synchronous or subharmonic response to an external forcing, the instability may be associated with two-frequency (quasiperiodic) perturbations. The cases of weightlessness and a transversely stratified fluid in a static gravity field are considered. Madrid, Perm’. Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No. 3, pp. 31–38, May–June, 2000. The investigations whose results are presented in this paper were supported by the Russian Foundation for Basic Research (project No. 98-01-00507).  相似文献   

14.
The present paper examines the effect of vertical harmonic vibration on the onset of convection in an infinite horizontal layer of fluid saturating a porous medium. A constant temperature distribution is assigned on the rigid boundaries, so that there exists a vertical temperature gradient. The mathematical model is described by equations of filtration convection in the Darcy–Oberbeck–Boussinesq approximation. The linear stability analysis for the quasi-equilibrium solution is performed using Floquet theory. Employment of the method of continued fractions allows derivation of the dispersion equation for the Floquet exponent σ in an explicit form. The neutral curves of the Rayleigh number Ra versus horizontal wave number α for the synchronous and subharmonic resonant modes are constructed for different values of frequency Ω and amplitude A of vibration. Asymptotic formulas for these curves are derived for large values of Ω using the method of averaging, and, for small values of Ω, using the WKB method. It is shown that, at some finite frequencies of vibration, there exist regions of parametric instability. Investigations carried out in the paper demonstrate that, depending on the governing parameters of the problem, vertical vibration can significantly affect the stability of the system by increasing or decreasing its susceptibility to convection.   相似文献   

15.
The onset of double diffusive convection in a viscoelastic fluid layer is studied using a linear and a weak nonlinear stability analyses. The onset criterion for stationary, oscillatory and finite amplitude convection is derived analytically. There is a competition between the processes of thermal diffusion, solute diffusion and viscoelasticity that causes the convection to set in through oscillatory mode rather than stationary. The effect of Deborah number, retardation parameter, solutal Rayleigh number, Prandtl number, Lewis number on the stability of the system is investigated. It is shown that the critical frequency increases with Deborah number and solutal Rayleigh number while it decreases with retardation parameter and Lewis number. The nonlinear theory based on the truncated representation of Fourier series method is used to find the heat and mass transfers. The transient behaviour of the Nusselt number and Sherwood number is investigated by solving the finite amplitude equations using Runge-Kutta method. The effect of viscoelastic parameters on heat and mass transfer is brought out.  相似文献   

16.
The thermovibrational instability of a plane horizontal layer of incompressible binary mixture is analyzed with account for the Soret thermodiffusion effect. To find the stability threshold in the linear approximation, Floquet's theory is used. It is shown that, depending on the amplitude and frequency, vibration can stabilize an unstable ground state or destabilize fluid equilibrium. Apart from the synchronous or subharmonic responses to external influences, instability may be related to quasi-periodic perturbations. The behavior of the threshold values at the low-frequency limit is considered.  相似文献   

17.
An experimental investigation focusing on the nonlinear stages of planar jet shear layer transition is presented. Experimental results for transition under both natural and low level artificial forcing conditions are presented and compared. The local spectral dynamics of the jet shear layer is modeled as a nonlinear system based upon a frequency domain, second-order Volterra functional series representation. The local linear and nonlinear wave coupling coefficients are estimated from time-series streamwise velocity fluctuation data. From the linear coupling coefficient, the mean dispersion characteristics and spatial growth rates may be obtained. With the estimation of the nonlinear power transfer function, the total, linear and quadratic nonlinear spectral energy transfer may be locally estimated. When these measures are used in conjunction with the local quadratic bicoherency and linear-quadratic coupling bicoherency, the local system output power may be completely characterized and the effect of nonlinearity on local mean flow distortion assessed. Particular attention is focused upon quantifying the linear and nonlinear power transfer that characterizes the different stages of the jet shear layer transition for both natural and excited flows. The quadratic power transfer that occurs with deviation from the perfect resonant wavenumber matching condition is clarified as is the dynamic mechanism of subharmonic resonance. The mechanism of spectral broadening is described and contrasted for natural and artificially excited flows.  相似文献   

18.
19.
A non-autonomous complex Ginzburg-Landau equation (CGLE) for the finite amplitude of convection is derived, and a method is presented here to determine the amplitude of this convection with a weakly nonlinear thermal instability for an oscillatory mode under throughflow and gravity modulation. Only infinitesimal disturbances are considered. The disturbances in velocity, temperature, and solutal fields are treated by a perturbation expansion in powers of the amplitude of the applied gravity field. Throughflow can stabilize or destabilize the system for stress free and isothermal boundary conditions. The Nusselt and Sherwood numbers are obtained numerically to present the results of heat and mass transfer. It is found that throughflow and gravity modulation can be used alternately to heat and mass transfer. Further, oscillatory flow, rather than stationary flow, enhances heat and mass transfer.  相似文献   

20.
The effects of both horizontal and vertical hydrodynamic, thermal and solutal heterogeneity, on the onset of convection in a horizontal layer of a saturated porous medium uniformly heated from below, are studied analytically using linear stability theory for the case of weak heterogeneity. The Brinkman model is employed. It is found that the effect of such heterogeneity on the critical value of the Rayleigh number Ra based on mean properties is of second order if the properties vary in a piecewise constant or linear fashion. The effects of horizontal heterogeneity and vertical heterogeneity are then comparable once the aspect ratio is taken into account, and to a first approximation are independent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号