首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Assembled films of nonaqueous nanoparticles, known as monolayer-protected clusters (MPCs), are investigated as adsorption platforms in protein monolayer electrochemistry (PME), a strategy for studying the electron transfer (ET) of redox proteins. Modified electrodes featuring MPC films assembled with various linking methods, including both electrostatic and covalent mechanisms, are employed to immobilize cytochrome c (cyt c) for electrochemical analysis. The background signal (non-Faradaic current) of these systems is directly related to the structure and composition of the MPC films, including nanoparticle core size, protecting ligand properties, as well as the linking mechanism utilized during assembly. Dithiol-linked films of Au225(C6)75 are identified as optimal films for PME by sufficiently discriminating against detrimental background current and exhibiting interfacial properties that are readily engineered for cyt c adsorption and electroactivity (Faradaic current). Surface concentrations and denaturation rates of adsorbed cyt c are dictated by specific manipulation of the individual MPCs composing the outer layer of the film. The use of specially designed, hydrophilic MPCs as a terminal film layer results in near-ideal cyt c voltammetry, attributed to a high degree of molecular level control of the necessary interfacial interactions and flexibility needed to create a uniform and effective binding of protein across large areas of a substrate. The electrochemical properties of cyt c at MPC films, including ET rate constants that are unaffected by the large ET distance introduced by MPC assemblies, are compared to traditional strategies employing self-assembled monolayers to immobilize cyt c. The incorporation of nanoparticles as protein adsorption platforms has implications for biosensor engineering as well as fundamental biological ET studies.  相似文献   

2.
Surface plasmon resonance (SPR) spectroscopy is employed for the study of biotinylated DNA assembly on streptavidin modified gold surfaces for target DNA hybridization. Two immobilization strategies are involved for constructing streptavidin films, namely, (1) physical adsorption on biotin-containing thiol treated surfaces through biotin-streptavidin links and (2) covalent attachment to 11-mercaptoundecanoic acid (MUA) treated surfaces through amine coupling. To understand the structural properties of the streptavidin films, a quartz crystal microbalance with energy dissipation monitoring (QCM-D) is used to monitor the streptavidin immobilization procedures. The simultaneously measured frequency (Deltaf) and dissipation factor (DeltaD) changes, together with the SPR angle shifts (Deltatheta), suggest that the streptavidin film assembled on the biotin-containing surface is highly rigid with a well-ordered structure while the streptavidin film formed through amine coupling is highly dissipative and less structured. The subsequent biotinylated DNA (biotin-DNA) assembly and target hybridization results show that the streptavidin film structure has distinct effects on the biotin-DNA binding amount. On the streptavidin matrix, not only the probe DNA density but also the strand orientation mediated by the streptavidin films has distinct effects on hybridization efficiency. Particularly, the molecularly ordered streptavidin films formed on the biotin-containing surfaces ensure a well-ordered DNA assembly, which in turn allows for a higher efficiency in target DNA capture and for a higher sensitivity in the hybridization analysis when compared to the biotin-DNA assembled on the less structured streptavidin films formed through amine coupling.  相似文献   

3.
Assembly of ultrathin polymer multilayer films by click chemistry   总被引:1,自引:0,他引:1  
Layer-by-layer (LbL) assembly is a versatile and robust technique for fabricating tailored thin films of diverse composition. Herein we report a new method of covalent coupling, click chemistry, to facilitate the LbL assembly of thin films. Linear film growth was observed using both UV-vis and FTIR spectroscopy, and film thicknesses were determined by ellipsometry and atomic force microscopy. The assembled films are shown to be stable in a wide pH range. This technique offers the potential to enable the synthesis of new types of stable and responsive LbL films from a variety of polymers.  相似文献   

4.
介绍了近几年来我们研究组在层状组装膜的构筑以及功能化研究方面取得的一些最新进展.包括结合表面溶胶-凝胶技术与静电层状组装技术,实现了二阶非线性基团在层状组装多层膜中的非对称排列,制备了具有二阶非线性效应的膜材料;采用室温压印技术,发展了一种简便、经济和具有普适性的层状组装聚合物膜图案化方法;以轻度交联的聚合物微凝胶为构筑基元,制备了具有高负载量的聚合物层状组装膜;发展了一种基于离子剥离技术的层状组装自支持膜制备方法;基于层状组装技术,制备了具有超疏水和抗反射功能的涂层.  相似文献   

5.
Palladium monolayer-protected clusters (MPCs) coated with octylamines (C8NH(2)), hexanethiolates (C6S), and mixed monolayers of C8NH(2) and C6S exhibit significantly different reactivities with hydrogen gas, depending on the relative amounts of the two ligands coating the Pd nanoparticle surface, as determined by UV-vis spectroscopy of Pd MPCs in solution and electronic measurements of films of Pd MPCs as a function of exposure time to hydrogen. The average estimated composition of the ~3.0 nm diameter Pd MPCs was Pd(919)(C6S)(192) or Pd(919)(C8NH(2))(177-x)(C6S)(x), where x was varied to be 0, 3, 10, 16, 32, or 81 by the synthesis of pure C8NH(2) Pd MPCs and subsequent liquid-phase place exchange with a varied amount of C6SH. When x = 0-10, the Pd MPCs react strongly with H(2), leading to aggregated particles in solution and large irreversible changes in the morphology of films accompanied by an increase in film conductivity by 2-5 orders of magnitude. Pd(919)(C6S)(192) MPCs are stable against significant aggregation in solution and do not exhibit large film morphology changes, but they are also not highly reactive to H(2), as determined by minimal changes in the optical properties of solutions and the small, irreversible changes in the conductivity of films in the presence of H(2). Finally, when x is 32 and 81, the Pd MPCs are fairly stable, exhibit minimal aggregation or morphology changes, and readily react with H(2) based on the significant, reversible changes in film conductivity in the presence of H(2). Pd MPCs with mixed monolayers have the benefit of high H(2) reactivity while maintaining the structural stability necessary for sensing and catalysis applications.  相似文献   

6.
智能响应与自修复的层层组装聚合物膜   总被引:2,自引:0,他引:2  
陈栋栋  马莹  孙俊奇 《高分子学报》2012,(10):1047-1054
具有刺激响应性和自修复功能的复合膜是重要的仿生功能膜材料.层层组装是一种基于物质交替沉积而制备复合膜的方法,可以实现膜的结构和组成的精确调控.通过结构与组成的精确调控,基于层层组装制备的微米厚度的聚电解质厚膜可以对外界刺激产生快速有效的响应,因而在制备智能仿生膜材料方面具有重要的价值.本文以作者的研究结果为基础,阐明了基于层层组装的聚电解质膜可以成功用于制备湿度和温度响应的双结构自支持膜和高效的促动器及行走机器,以及自修复超疏水和划痕修复聚电解质膜.  相似文献   

7.
This paper describes reactions in which ligands are exchanged and metals are transferred between monolayer-protected metal clusters (MPCs) that are in different phases (heterophase exchange) or are in the same phase. For example, contact of toluene solutions of alkanethiolate-coated gold MPCs with aqueous solutions of tiopronin-coated gold MPCs yields toluene-phase MPCs that have some tiopronin ligands and aqueous-phase MPCs that have some alkanethiolate ligands. In a second example, heterophase transfer reactions occur between toluene solutions of alkanethiolate-coated gold MPCs and aqueous solutions of tiopronin-coated silver MPCs, in which tiopronin ligands are transferred to the former and gold metal to the latter phase. These ligand and metal exchange reactions are inhibited when conducted under N(2). The results implicate participation of an oxidized form of Au (such as a Au(I) thiolate, Au(I)-SR) as both a ligand and metal carrier in the exchange reactions. Au(I)-SR is demonstrated to be an exchange catalyst.  相似文献   

8.
Hydrogen gas spontaneously adsorbs to Pd metal as atomic hydrogen and diffuses into the lattice to form PdHx. We previously showed that films of hexanethiolate-coated Pd monolayer-protected clusters (MPCs) do not readily react with H2 due to the strong chemical bonding of the thiolate to the Pd, which inhibits the reaction. Consequently, these films require ozone or heat treatment for reactivity to occur, which is inconvenient for sensing or catalysis applications. In this report, we describe the reactivity between H2 and solid-state films of alkylamine-coated Pd, PdAg (10:1), and PdAu (10:1) MPCs and films of tetraoctylammonium bromide (TOABr)-stabilized Pd and PdAg (10:1) nanoparticles as determined by changes in film conductivity. Our data show that Pd nanoparticles coated with these more weakly coordinated amine or ammonium groups readily react with H2 without any need for ozone or heat treatment. The conductivity of films of octylamine (C8NH2)- or dodecylamine (C12NH2)-coated Pd, PdAg, and PdAu MPCs increases irreversibly upon initial exposure to 100% H2 to varying degrees and with different reaction kinetics and then exhibits stable, reversible changes in the presence of H2 concentrations ranging from 9.6 to 0.08%. The behavior upon initial exposure to H2 (conditioning) and the direction and magnitude of the reversible conductivity changes depend on the alkyl chainlength and alloy composition. Films of TOABr-coated Pd and PdAg nanoparticles show stable, reversible increases in conductivity in the presence of H2 concentrations from 9.6 down to 0.11% without conditioning. Surface FTIR spectroscopy and atomic force microscopy (AFM) provide information about the organic monolayer and film morphology, respectively, following reactivity with H2. This work demonstrates a simple approach toward preparing films of chemically synthesized Pd-containing nanoparticles with controlled reactivity to H2 for sensing and catalysis applications.  相似文献   

9.
We report the influence of polyelectrolyte (PE) multilayer films prepared from poly(styrene sulfonate)-poly(acrylic acid) (PSS-PAA) blends, deposited in alternation with poly(allylamine hydrochloride) (PAH), on film wettability and the adsorption behavior of the protein immunoglobulin G (IgG). Variations in the chemical composition of the PAH/(PSS-PAA) multilayer films, controlled by the PSS/PAA blend ratio in the dipping solutions, were used to systematically control film thickness, surface morphology, surface wettability, and IgG adsorption. Spectroscopic ellipsometry measurements indicate that increasing the PSS content in the blend solutions results in a systematic decrease in film thickness. Increasing the PSS content in the blend solutions also leads to a reduction in film surface roughness (as measured by atomic force microscopy), with a corresponding increase in surface hydrophobicity. Advancing contact angles (theta) range from 7 degrees for PAH/PAA films through to 53 degrees for PAH/PSS films. X-ray photoelectron spectroscopy measurements indicate that the increase in film hydrophobicity is due to an increase in PSS concentration at the film surface. In addition, the influence of added electrolyte in the PE solutions was investigated. Adsorption from PE solutions containing added salt favors PSS adsorption and results in more hydrophobic films. The amount of IgG adsorbed on the multilayer films systematically increased on films assembled from blends with increasing PSS content, suggesting strong interactions between PSS in the multilayer films and IgG. Hence, multilayer films prepared from blended PE solutions can be used to tune film thickness and composition, as well as wetting and protein adsorption characteristics.  相似文献   

10.
Li Y  Zheng M  Ma L  Zhong M  Shen W 《Inorganic chemistry》2008,47(8):3140-3143
Grid-structured ZnO microsphere arrays assembled by uniform ZnO nanorods were fabricated by noncatalytic chemical vapor deposition, taking advantage of morphologies of alumina nanowire pyramid substrates and ZnO oriented growth habits. Every ZnO microsphere (similar to the micropapilla on a lotus leaf surface) is assembled by over 200 various oriented ZnO nanorods (similar to the hairlike nanostructures on mircopapilla of a lotus leaf). This lotus-leaf-like ZnO micro-nanostructure films reveal superhydrophobicity and ultrastrong adhesive force to liquid. The realization of this hierarchical ZnO nanostructure film could be important for further understanding wettability of biological surfaces with micro-nanostructure and application in microfluidic devices.  相似文献   

11.
The development of new thin film fabrication techniques that allow for precise control of degradation and drug release properties could represent an important advance in the fields of drug delivery and biomedicine. Polyelectrolyte layer-by-layer (LBL) thin films can be assembled with nanometer scale control over spatial architecture and morphology, yet very little work has focused on the deconstruction of these ordered thin films for controlled release applications. In this study, hydrolytically degradable LBL thin films are constructed by alternately depositing a degradable poly(beta-amino ester) (polymer 1) and a series of model therapeutic polysaccharides (heparin, low molecular weight heparin, and chondroitin sulfate). These films exhibit pH-dependent, pseudo-first-order degradation and release behavior. The highly versatile and tunable properties of these materials make them exciting candidates for the controlled release of a wide spectrum of therapeutics.  相似文献   

12.
An ultrathin film of oligoimide has been fabricated on amine-modified substrates of silicon and quartz through alternate layer-by-layer (LBL) assembly of pyromellitic dianhydride (PMDA) and diaminodiphenyl ether (DDE), with interlayer links established by covalent bonds. The assembly was formed in supercritical carbon dioxide (SCCO2) and in solution (dimethyl acetamide, DMAc), and the imidization reaction was performed by thermal and chemical methods, in benzene and in the supercritical medium. X-ray photoelectron and UV-visible absorption spectroscopies, atomic force microscopy (AFM), and ellipsometry were employed to study the interfacial chemistry, growth, morphology, and thickness of the assembled film. XPS analysis confirmed the sequential deposition of PMDA and DDE through formation of amic acids. At each deposition step, surface functionalities for the assembly of the next layer were generated. The interfacial chemical reaction was almost complete in the SCF (supercritical fluid) medium, as compared to the conversions observed in conventional assembly. Both the PMDA and DDE molecules were assembled in an organized manner, resulting in uniform surface morphology. Uniform film growth was revealed from the increase of UV absorption intensity and film thickness. The overall growth and quality of the films in SCF medium were greater than that for films formed in DMAc. The results of this novel study show that an environmentally friendly solvent can be used to obtain mechanically robust and thermally stable ultrathin films with little loss of material during the imidization step. In contrast to conventional deposition of the molecular layers that utilizes liquid solvents, use of SCCO(2) avoids solvent effects and posttreatment for solvent removal, while ensuring facile transport during contact.  相似文献   

13.
Fourier transform infrared-attenuated total reflection (FTIR-ATR) spectra have been recorded of 11-layer Langmuir-Blodgett (LB) films of stearic acid deposited at various surface pressures (0.1, 15, and 35 mN/m), and the molecular orientation angles were evaluated quantitatively, which supplied insight into the molecular order with the alkyl chains tightly packed like crystal in the LB films deposited at the zero and higher surface pressures. These experimental results indicate that, in the Langmuir film as the precursor of LB films, stearic acid molecules self-aggregate to form two-dimensional crystalline domains already even at the zero surface pressure, which results in the inhomogeneity of monolayer. The analysis of dependence of nu(C=O) intensity on the surface pressure, surface density, and subphase temperature leads to the conclusion that the defects in LB films originate from the Langmuir film and be conserved upon deposition. Annealing below 50 degrees C and cooling could improve the monolayer homogeneity, and thus a defect-free or low-defect LB films can be deposited. Furthermore, ion exchange conducted in the LB films, on the other hand, confirms the existence of structure defects in LB films of stearic acid. The polar plane microstructure, lateral transport along the polar planes and the coordination types of stearic acid/cation system may be the rate-limiting process. The results have implication on the possible uses of stearic acid LB films as ion-exchange materials or sensors. Copyright 2001 Academic Press.  相似文献   

14.
The construction of highly stable and efficiently assembled multilayer films of purely water soluble gold nanoparticles is reported. Citrate-stabilized nanoparticles (CS-NPs) of average core diameter of 10 nm are used as templates for stabilization-based exchange reactions with thioctic acid to form more robust aqueous NPs that can be assembled into multilayer films. The thioctic acid stabilized nanoparticles (TAS-NPs) are networked via covalent and electrostatic linking systems, employing dithiols and the cationic polymer poly(L-lysine), respectively. Multilayer films of up to 150 nm in thickness are successfully grown at biological pH with no observable degradation of the NPs within the film. The characteristic surface plasmon band, an optical feature of certain NP film assemblies that can be used to report the local environment and core spacing within the film, is preserved. Growth dynamics and film stability in solution and in the air are examined, with poly(L-lysine) linked films showing no evidence of aggregation for at least 50 days. We believe these films represent a pivotal step toward exploring the potential of aqueous NP film assemblies as a sensing apparatus.  相似文献   

15.
Ultrathin films were fabricated using synthesized hydroxyl polyimide (HPI) in a layer-by-layer fashion on amine-terminated substrates of silicon, quartz, and gold. The interlayer linkages were established by using terephthaloyl chloride as a bridging agent to form ester groups between HPI layers. Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, UV-vis absorption spectroscopy, atomic force microscopy, ellipsometry, and electrochemical impedance spectroscopy were employed to study the interfacial chemistry, stepwise growth, morphology, thickness, optical property, and insulation behavior of the assembled film. The films show excellent stability and strength, which can be attributed to the covalent interlayer linkage.  相似文献   

16.
Multilayer films were assembled from a strong polyelectrolyte (poly(diallyldimethylammonium chloride), PDADMAC) and a copolymer containing both strongly charged styrene sulfonate moieties and weakly charged maleic acid moieties (poly(4‐styrenesulfonic acid‐co‐maleic acid), PSSMA). Growth of PSSMA/PDADMAC multilayers was linear, as characterized by UV‐vis spectroscopy and quartz crystal microgravimetry. The influence of both the pH of the PSSMA adsorption solutions and the ratio of SS:MA in the PSSMA on multilayer properties was investigated. Fourier transform infrared spectroscopy results showed that the ionization of carboxylic acid groups in PSSMA/PDADMAC multilayers did not vary significantly with changes in the PSSMA assembly pH. However, the multilayers showed different thicknesses, surface morphologies, and stability to post‐assembly pH treatment. We also demonstrate that PSSMA/PDADMAC multilayers are significantly more stable than PSSMA/PAH multilayers after post‐assembly pH treatment (i.e. the films remain intact when exposed to pH extremes). In addition, the surface morphology of two films (PSSMA 1:1 assembled at pH 5.8, post‐treated at pH 2 and PSSMA 3:1 assembled at pH 5.8, post‐treated at pH 11) changed significantly when the films were exposed to solutions of different pH and, in the former case, this change in film morphology was reversible. The porous morphology after treatment at pH 2 could be reversed to give a significantly smoother film after subsequent exposure to water for 24 h. Our results demonstrate that by the rational choice of the assembly pH of PSSMA, stable and pH‐responsive films can be obtained via the sequential assembly of PSSMA and PDADMAC. These films have potential in controlled release applications where film stability and pH‐responsive behavior are essential. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4341‐4351, 2007  相似文献   

17.
Films of monolayer protected Au clusters (MPCs) with mixed alkanethiolate and omega-carboxylate alkanethiolate monolayers, linked together in a network polymer by carboxylate-Cu2+-carboxylate bridges, exhibit electronic conductivities (sigma(EL)) that vary with both the numbers of methylene segments in the ligands and the bathing medium (N2, liquid or vapor). A chainlength-dependent swelling/contraction of the film's internal structure is shown to account for changes in sigma(EL). The linker chains appear to have sufficient flexibility to collapse and fold with varied degrees of film swelling or dryness. Conductivity is most influenced (exponentially dependent) by the chainlength of the nonlinker (alkanethiolate) ligands, a result consistent with electron tunneling through the alkanethiolate chains and nonbonded contacts between those chains on individual, adjacent MPCs. The sigma(EL) results concur with the behavior of UV-vis surface plasmon adsorption bands, which are enhanced for short nonlinker ligands and when the films are dry. The film conductivities respond to exposure to organic vapors, decreasing in electronic conductivity and increasing in mass (quartz crystal microgravimetry, QCM). In the presence of organic vapor, the flexible network of linked nanoparticles allows for a swelling-induced alteration in either length or chemical nature of electron tunneling pathways or both.  相似文献   

18.
We report on the binding of metal ions (Me(2+); Co(2+) and Cu(2+)) with weak polyelectrolyte multilayers (PEMs), as well as on catalytic activity of PEM-Me(2+) films for oxidation of toluene. Using several types of PEM films constructed using branched polyethyleneimine (BPEI) or quaterinized poly-4-vinylpyridines (QPVPs) as polycations and poly(acrylic acid) (PAA) or poly(styrene sulfonate) (PSS) as polyanions, we found that binding of Co(2+) and Cu(2+) ions with a PEM matrix can occur both through coordination to polycationic amino groups and/or ionic binding to polyacid groups. The amount of metal ions loaded within the film increased linearly with film thickness and was strongly dependent on polyelectrolyte type, film assembly pH, and fraction of permanent charge in polymer chains. Among various PEM-Me(2+) systems, BPEI/PAA-Co(2+) films assembled at pH 8.5 show the best catalytic performance, probably because of the preservation of high mobility of Co(2+) ions coordinated to amino groups of BPEI in these films. With BPEI/PAA-Co(2+) films, we demonstrated that films were highly permeable to reagents and reaction products within hundreds of nanometers of the film bulk; i.e., film catalytic activity increased linearly with layer number up to 30 bilayers and slowed for thicker films.  相似文献   

19.
银纳米粒子在云母表面的二维组装及其表面增强拉曼效应   总被引:3,自引:0,他引:3  
随着纳米技术的迅速发展 ,利用共价或非共价键作用将金属纳米粒子组装到固体基片上 ,因其方法简单、重复性好而成为研究热点 .目前 ,人们已经成功地利用带有— SH[1,2 ] ,—CN,— NH2 [3 ] 等基团的单层或多层膜作为偶联剂将 Au和 Ag等金属纳米粒子固定在玻璃、石英、硅、金等固体基片上 .但在许多情况下 ,偶联剂却成为一种干扰物质 .云母是一种重要的电子工业材料 ,并具有廉价、较易获得新鲜表面等特点 ,研究金属纳米粒子在云母表面的组装和排列无疑具有重要意义 .但是 ,迄今为止 ,在表面没有偶联剂修饰的条件下 ,以云母为基底的金属纳…  相似文献   

20.
Carbonaceous films containing Pd nanocrystals can be applied as active layers in gas sensor applications. In this article we show results of studies of C-Pd films, obtained with two different methods: (1) physical and (2) physical + chemical deposition. First type of film prepared by physical vapor deposition (PVD) process was composed of fullerenes, amorphous carbon, and palladium nanograins. In the second method PVD film was modified in chemical vapor deposition (CVD) process forming a foam-like structure. Both types of films were studied by SEM, TEM, TGA, and electrical characterization (measurement of resistivity versus composition of gaseous hydrocarbons mixture).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号