首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmodium falciparum (Pf) hypoxanthine‐guanine phosphoribosyltransferase (HGPRT) is a potential therapeutic target. Compared to structurally homologous human enzymes, it has expanded substrate specificity. In this study, 9‐deazapurines are used as in situ probes of the active sites of human and Pf HGPRTs. Through the use of these probes it is found that non‐covalent interactions stabilise the pre‐transition state of the HGPRT‐catalysed reaction. Vibrational spectra reveal that the bound substrates are extensively distorted, the carbonyl bond of nucleobase moiety is weakened and the substrate is destabilised along the reaction coordinate. Raman shifts of the human and Pf enzymes are used to quantify the differing degrees of hydrogen bonding in the homologues. A decreased Raman cross‐section in enzyme‐bound 9‐deazaguanine (9DAG) shows that the phenylalanine residue (Phe186 in human and Phe197 in Pf) of HGPRT stacks with the nucleobase. Differential loss of the Raman cross‐section suggests that the active site is more compact in human HGPRT as compared to the Pf enzyme, and is more so in the phosphoribosyl pyrophosphate (PRPP) complex 9DAG–PRPP–HGPRT than in 9‐deazahypoxanthine (9DAH)–PRPP–HGPRT.  相似文献   

2.
Cyclodextrin glucanotransferase, produced by Bacillus megaterium, was characterized, and the biochemical properties of the purified enzyme were determined. The substrate specificity of the enzyme was tested with different α-1,4-glucans. Cyclodextrin glucanotransferase displayed maximum activity in the case of soluble starch, with a K m value of 3.4 g/L. The optimal pH and temperature values for the cyclization reaction were 7.2 and 60 °C, respectively. The enzyme was stable at pH 6.0–10.5 and 30 °C. The enzyme activity was activated by Sr2+, Mg2+, Co2+, Mn2+, and Cu2+, and it was inhibited by Zn2+and Ag+. The molecular mass of cyclodextrin glucanotransferase was established to be 73,400 Da by sodium dodecyl sulfate–polyacrylamide gel electrophoresis, 68,200 Da by gel chromatography, and 75,000 Da by mass spectrometry. The monomer form of the enzyme was confirmed by the analysis of the N-terminal amino acid sequence. Cyclodextrin glucanotransferase formed all three types of cyclodextrins, but the predominant product was β-cyclodextrin.  相似文献   

3.
The chromophoric spin-label substrate 6-N-[3-(2,2,5,5-tetramethyl-1-oxypyrrolin-3-yl)-propen-2-oyl]penicillanic acid (SLPPEN) was synthesized by acylation of 6-aminopenicillanic acid with the acid chloride of 3-(2,2,5,5-tetramethyl-1-oxypyrrolinyl)-2-propenoic acid and characterized by physical methods. By application of angle-selected electron nuclear double resonance (ENDOR), we have determined the molecular structure of SLPPEN in solution. SLPPEN exhibited UV absorption properties that allowed accurate monitoring of the kinetics of its enzyme-catalyzed hydrolysis. The maximum value of the (substrate-product) difference extinction coefficient was 2824 M(-1) cm(-1) at 275 nm compared to 670 M(-1) cm(-1) at 232 nm for SLPEN [J. Am. Chem. Soc. 117 (1995) 6739]. For SLPPEN, the steady-state kinetic parameters kcat and kcat/KM, determined under initial velocity conditions, were 637 +/- 36 s(-1) and 13.8 +/- 1.4 x 10(6) M(-1) s(-1), respectively, for hydrolysis catalyzed by TEM-1 beta-lactamase of E. coli, and 0.5 +/- 0.04 s(-1) and 3.9 +/- 0.4 x 10(4) M(-1) s(-1) for hydrolysis catalyzed by the beta-lactamase of Enterobacter cloacae P99. We have also observed "burst kinetics" for the hydrolysis of SLPPEN with P99 beta-lactamase, indicative of formation of an acylenzyme reaction intermediate. In DMSO:H2O (30:70, v:v) cryosolvent mixtures buffered to pH* 7.0, the half-life of the acylenzyme intermediate formed with the P99 enzyme at -5 degrees C was > or = 3 min, suitable for optical characterization. The observation of burst kinetics in the hydrolysis of SLPPEN catalyzed by P99 beta-lactamase suggests that this chromophoric spin-labeled substrate is differentially sensitive to active site interactions underlying the cephalosporinase and penicillinase reactivity of this class C enzyme.  相似文献   

4.
Bacteria of genus Bacillus are active producers of extracellular proteases, and characteristics of enzyme production by Bacillus species have been well studied. The aim of this experimental study is isolation and partial purification of protease enzyme from the Bacillus subtilis megatherium bacteria species. Protease enzyme is obtained by inducing spore genesis of bacteria from Bacillus species on suitable media. The partial purification was reali-zed by applying successively ammonium sulfate precipitation, dialysis, DEAE-cellulose ion exchange chromatography to the supernatant. In this study, the effect of substrate concentration, reaction time, the effect of inhibitor and activator on the optimum pH, optimum temperature, pH stability, and temperature stability was determined. Molecular weight of the obtained enzyme was investigated by SDS-PAGE. In this study, the specific activity of the supernatant, which was partially purified from Bacillus subtilis megatherium bacteria, was 10.4 U/mg, specific activity of supernatant was 13.5 U/mg after 80% ammonium sulfate fractionation. The final enzyme preparation was 1.1-fold purer than the crude homogenate. Molecular weight of the protease was determined, and it was found that the weight of enzyme was 45 kDa by using SDS-PAGE.  相似文献   

5.
The oxidosqualene cyclase (OSC) catalyzed cyclization of the linear substrate (3S)-2,3-oxidosqualene to form diverse pentacyclic triterpenoid (PT) skeletons is one of the most complex reactions in nature. Friedelin has a unique PT skeleton involving a fascinating nine-step cation shuttle run (CSR) cascade rearrangement reaction, in which the carbocation formed at C2 moves to the other side of the skeleton, runs back to C3 to yield a friedelin cation, which is finally deprotonated. However, as crystal structure data of plant OSCs are lacking, it remains unknown why the CSR cascade reactions occur in friedelin biosynthesis, as does the exact catalytic mechanism of the CSR. In this study, we determined the first cryogenic electron microscopy structure of a plant OSC, friedelin synthase, from Tripterygium wilfordii Hook. f (TwOSC). We also performed quantum mechanics/molecular mechanics simulations to reveal the energy profile for the CSR cascade reaction and identify key residues crucial for PT skeleton formation. Furthermore, we semirationally designed two TwOSC mutants, which significantly improved the yields of friedelin and β-amyrin, respectively.  相似文献   

6.
Partially purified glucose isomerase fromStreptomyces thermonitrificans when coupled to glutaraldehyde-activated Indion 48-R, retained 30–40% activity of the soluble enzyme. However, an approximately twofold increase in the activity could be achieved by binding the enzyme in the presence of glucose. Binding the enzyme to matrices presaturated with either glucose or fructose and influence of lysine modification on the activity of the soluble enzyme revealed that the comparatively low activity observed in case of the enzyme bound in the absence of substrate is the result of the nonspecific binding of either substrate or product to the matrix. Immobilization did not affect the pH and temperature optima of the enzyme, but it lowered the temperature stability. Immobilization resulted in a marginal increase in theK m and a threefold decrease in theV max . Substrate concentrations as high as 36% glucose could be converted to 18.5% fructose in 5 h, at pH 7.0 and 70‡C. The bound enzyme, however, showed inferior stability to repeated use and lost approx 40% of its initial activity after five cycles of use. Indion 48-R bound glucose isomerase could be stored, in wet state, for 30 d without any apparent loss in its initial activity.  相似文献   

7.
The active site of the oxygenase component of naphthalene 1,2-dioxygenase (NDO) contains a Rieske Fe-S cluster and a mononuclear non-heme iron, which are contributed by different alpha-subunits in the (alphabeta)(3) structure. The enzyme catalyzes cis-dihydroxylation of aromatic substrates in addition to numerous other adventitious oxidation reactions. High-resolution Mims (2)H-ENDOR spectra have been recorded for the NO-ferrous center of NDO bound with d(8)-naphthalene and d(2)-naphthalene; spectra were collected for the enzyme with the Rieske diiron center both in its oxidized and in its reduced states. A sharp quartet ENDOR pattern from a nearby deuteron of substrate was detected for each substrate. Examination of the sample prepared with 1,4-dideutero-naphthalene shows that the signal arises from D1. The ENDOR data place D1 at a distance of ca. 4.4 A from the mononuclear Fe and with the Fe-D vector being roughly along the Fe-N(O) direction. Because reduction of the Rieske cluster is required for O(2) binding and subsequent catalysis, the effect of its oxidation state on substrate binding was examined. The spectra from the NDO-naphthalene complex reveal two different binding conformations, which change in relative population when the oxidation state of the Rieske cluster is changed. This shift, and the conformational coupling it implies, may hold the key to both oxygen gating and oxygen reactivity for Rieske aromatic dioxygenases.  相似文献   

8.
By activation of the hydrogen acceptor , the metal-free hydrogenase from methanogenic archaea catalyzes the reduction of methenyl tetrahydromethanopterin with H2. According to NMR spectroscopic analysis of the conformation of the hydrogen acceptor in solution and of the stereospecificity of the catalyzed and noncatalyzed reaction, in the enzyme-catalyzed reaction the hydrogenation product is formed in a constraint conformation which relaxes upon dissociation from the enzyme. This exergonic conformational change could help to avoid product inhibition of the enzyme.  相似文献   

9.
The gene encoding a glycoside hydrolase family 39 xylosidase (BH1068) from the alkaliphile Bacillus halodurans strain C-125 was cloned with a C-terminal His-tag, and the recombinant gene product termed BH1068(His)6 was expressed in Escherichia coli. Of the artificial substrates tested, BH1068(His)6 hydrolyzed nitrophenyl derivatives of β-d-xylopyranose, α-l-arabinofuranose, and α-l-arabinopyranose. Deviation from Michaelis−Menten kinetics at higher substrate concentrations indicative of transglycosylation was observed, and k cat and K m values were measured at both low and high substrate concentrations to illuminate the relative propensities to proceed along this alternate reaction pathway. The pH maximum was 6.5, and under the conditions tested, maximal activity was at 47°C, and thermal instability occurred above 45°C. BH1068(His)6 was inactive on arabinan, hydrolyzed xylooligosaccharides, and released only xylose from oat, wheat, rye, beech, and birch arabinoxylan, and thus, can be classified as a xylosidase with respect to natural substrate specificity. The enzyme was not inhibited by up to 200 mM xylose. The oligomerization state was tetrameric under the size-exclusion chromatography conditions employed.  相似文献   

10.
Chitinase-catalyzed hydrolytic and transglycosylating behavior of 1,2-oxazoline derivative of N-acetyllactosamine (LacNAc-oxa) 1 has been investigated. An extremely rapid hydrolysis (ring-opening of the oxazoline moiety) could be observed, suggesting that 1 behaves as a transition state analogue substrate for chitinase A1 (Bacillus circulans WL-12). This disaccharide monomer 1 was found to polymerize under basic conditions, giving rise to novel oligosaccharides having a β(1-4)–β(1-6) repeating unit in the main chain. The degree of polymerization of the resulting oligosaccharides was up to 5. This is the first example of enzymatic glycosylation reaction forming a β(1-6) bond catalyzed by chitinase.  相似文献   

11.
Herein, we report a practical protocol for the synthesis of sulfur cycle fused 1,2,3‐triazoles through a copper(I)‐catalyzed tandem click/intramolecular sulfenylation reaction. The reaction proceeded via a copper‐catalyzed alkyne azide cycloaddition, followed by interception of the in situ formed cuprate‐triazole intermediate with p‐toluenesulfonothioate. This reaction shows broad substrate scope, complete regioselectivity, and excellent functional group tolerance under mild reaction conditions.  相似文献   

12.
Many industrial pollutants, xenobiotics, and industry-important compounds are known to be oxidized by peroxidases. It has been shown that highly efficient peroxidase substrates are able to enhance the oxidation of low reactive substrate by acting as mediators. To explore this effect, the oxidation of two N-hydroxy derivatives, i.e., N-hydroxy-N-phenyl-acetamide (HPA) and N-hydroxy-N-phenyl-carbamic acid methyl ester (HPCM) catalyzed by recombinant Coprinus cinereus (rCiP) peroxidase has been studied in presence of efficient substrate 3-(4a,10a-dihydro- phenoxazin-10-yl)-propane-1-sulfonic acid (PPSA) at pH 8.5. The bimolecular constant of PPSA cation radical reaction with HPA was estimated to be (2.5 ± 0.2)·107 M−1 s−1 and for HPCM was even higher. The kinetic measurements show that rCiP-catalyzed oxidation of HPA and HPCM can increase up to 33,000 times and 5,500 times in the presence of equivalent concentration of high reactive substrate PPSA. The mathematical model of synergistic rCiP-catalyzed HPA–PPSA and HPCM–PPSA oxidation was proposed. Experimentally obtained rate constants were in good agreement with those calculated from the model confirming the synergistic scheme of the substrate oxidation. In order to explain the different reactivity of substrates, the docking of substrates in the active site of the enzyme was calculated. Molecular dynamic calculations show that the enzyme–substrate complexes are structurally stable. The high reactive PPSA exhibited higher affinity to enzyme active site than HPA and HPCM. Furthermore, the orientation of HPA and HPCM was not favorable for proton transfer to the distal histidine, and different substrate reactivity was explained by these diversities.  相似文献   

13.
The production of yeast cell wall mannan degrading -mannosidase was studied in shake flask experiments as well as in a highly instrumented, computer-coupled bioreactor. The enzyme is predominantly excreted into the culture liquid upon submerged cultivation on yeast mannan. Only low activities were detected with mannose or glucose as carbon source whereas the enzyme formation was totally repressed by glycerol. The amount of enzyme produced is proportional to the microbial biomass formed.Carbon-unlimited cultivation on mannose, the primary product of enzymic digestion, resulted in a specific growth rate of 0.10h–1, a specific oxygen uptake rate ·h and a respiratory quotient ofRQ=1.0. Addition of yeast mannan (0.5%) to nutrient-depleted bacterial cells resulted in an almost complete utilization of this substrate, with 55% of substrate carbon being converted to biomass and 37% to carbon dioxide. The yield coefficient on mannan wasY x/s =0.51 (g/g). Enzyme formation started with a delay of 30–40 min and stopped with termination of growth. Due to the increased production of mannose by the action of the enzyme the specific growth rate increased from 0.05 to 0.10 h–1, thus enabling computations of maintenance and yield coefficients for oxygen and carbon dioxide metabolism.
  相似文献   

14.
An enzyme immunoassay based on the use of crossed-beam thermal lens detection is described. In this assay, poly-N-isopropylacrylamide, a water-soluble, thermally precipitating synthetic polymer, was used as a carrier to minimize non-specific binding. The enzyme substrate of the horseradish peroxidase that was employed was 3,3′,5,5′-tetramethylbenzidine. The color development of the enzyme–substrate reaction was stopped by SDS and Na2SO3 to achieve a stable blue solution. The background reduction and stabilization made it possible to use a crossed-beam thermal lens technique as the measurement method. This method was demonstrated to be applicable by determination of hepatitis B surface antigen in human serum. A detection limit of 0.15 ng/ml was obtained. This was more sensitive than that of the commercially available ELISA method.  相似文献   

15.
To investigate fundamental features of enzyme catalysis, there is a need for high-level calculations capable of modelling crucial, unstable species such as transition states as they are formed within enzymes. We have modelled an important model enzyme reaction, the Claisen rearrangement of chorismate to prephenate in chorismate mutase, by combined ab initio quantum mechanics/molecular mechanics (QM/MM) methods. The best estimates of the potential energy barrier in the enzyme are 7.4-11.0 kcal mol(-1)(MP2/6-31+G(d)//6-31G(d)/CHARMM22) and 12.7-16.1 kcal mol(-1)(B3LYP/6-311+G(2d,p)//6-31G(d)/CHARMM22), comparable to the experimental estimate of Delta H(++)= 12.7 +/- 0.4 kcal mol(-1). The results provide unequivocal evidence of transition state (TS) stabilization by the enzyme, with contributions from residues Arg90, Arg7, and Arg63. Glu78 stabilizes the prephenate product (relative to substrate), and can also stabilize the TS. Examination of the same pathway in solution (with a variety of continuum models), at the same ab initio levels, allows comparison of the catalyzed and uncatalyzed reactions. Calculated barriers in solution are 28.0 kcal mol(-1)(MP2/6-31+G(d)/PCM) and 24.6 kcal mol(-1)(B3LYP/6-311+G(2d,p)/PCM), comparable to the experimental finding of Delta G(++)= 25.4 kcal mol(-1) and consistent with the experimentally-deduced 10(6)-fold rate acceleration by the enzyme. The substrate is found to be significantly distorted in the enzyme, adopting a structure closer to the transition state, although the degree of compression is less than predicted by lower-level calculations. This apparent substrate strain, or compression, is potentially also catalytically relevant. Solution calculations, however, suggest that the catalytic contribution of this compression may be relatively small. Consideration of the same reaction pathway in solution and in the enzyme, involving reaction from a 'near-attack conformer' of the substrate, indicates that adoption of this conformation is not in itself a major contribution to catalysis. Transition state stabilization (by electrostatic interactions, including hydrogen bonds) is found to be central to catalysis by the enzyme. Several hydrogen bonds are observed to shorten at the TS. The active site is clearly complementary to the transition state for the reaction, stabilizing it more than the substrate, so reducing the barrier to reaction.  相似文献   

16.
N-alkylisonitrile, a precursor to isonitrile-containing lipopeptides, is biosynthesized by decarboxylation-assisted -N≡C group (isonitrile) formation by using N-alkylglycine as the substrate. This reaction is catalyzed by iron(II) and 2-oxoglutarate (Fe/2OG) dependent enzymes. Distinct from typical oxygenation or halogenation reactions catalyzed by this class of enzymes, installation of the isonitrile group represents a novel reaction type for Fe/2OG enzymes that involves a four-electron oxidative process. Reported here is a plausible mechanism of three Fe/2OG enzymes, Sav607, ScoE and SfaA, which catalyze isonitrile formation. The X-ray structures of iron-loaded ScoE in complex with its substrate and the intermediate, along with biochemical and biophysical data reveal that -N≡C bond formation involves two cycles of Fe/2OG enzyme catalysis. The reaction starts with an FeIV-oxo-catalyzed hydroxylation. It is likely followed by decarboxylation-assisted desaturation to complete isonitrile installation.  相似文献   

17.
Pseudomonas fluorescens (strain BTP9) was found to have at least two NAD(P)-dependent vanillin dehydrogenases: one is induced by vanillin, and the other is constitutive. The constitutive enzyme was purified by ammonium sulfate fractionation, gel-filtration, and Q-Sepharose chromatography. The subunit Mr value was 55,000, determined by sodium dodecyl sulfate polyacrylamide gel electrophoresis. The native M r value estimated by gelfiltration chromatography gave a value of 210,000. The enzyme made use of NAD+ less effectively than NADP+. Benzaldehyde, 4-hydroxybenzaldehyde, hexanal, and acetaldehyde were not oxidized at detectable rates in the presence of NAD+ or NADP+. The ultraviolet absorption spectrum indicated that there is no cofactor or prosthetic group bound. The vanillin oxidation reaction was essentially irreversible. The pH optimum was 9.5 and the pI of the enzyme was 4.9. Enzyme activity was not affected when assayed in the presence of salts, except FeCl2. The enzyme was inhibited by the thiol-blocking reagents 4-chloromercuribenzoate and N-ethylmaleimide. NAD+ and NADP+ protected the enzyme against such a type of inhibition along with vanillin to a lesser extent. The enzyme exhibited esterase activity with 4-nitrophenyl acetate as substrate and was activated by low concentrations of NAD+ or NADP+. We compared the properties of the enzyme with those of some well-characterized microbial benzaldehyde dehydrogenases.  相似文献   

18.
Here we have systematically studied the cooperative binding of substrate molecules on the active sites of a single oligomeric enzyme in a chemiostatic condition. The average number of bound substrate and the net velocity of the enzyme catalyzed reaction are studied by the formulation of stochastic master equation for the cooperative binding classified here as spatial and temporal. We have estimated the entropy production for the cooperative binding schemes based on single trajectory analysis using a kinetic Monte Carlo technique. It is found that the total as well as the medium entropy production shows the same generic diagnostic signature for detecting the cooperativity, usually characterized in terms of the net velocity of the reaction. This feature is also found to be valid for the total entropy production rate at the non-equilibrium steady state. We have introduced an index of cooperativity, C, defined in terms of the ratio of the surprisals or equivalently, the stochastic system entropy associated with the fully bound state of the cooperative and non-cooperative cases. The criteria of cooperativity in terms of C is compared with that of the Hill coefficient of some relevant experimental result and gives a microscopic insight on the mechanism of cooperative binding of substrate on a single oligomeric enzyme which is usually estimated from the macroscopic reaction rate.  相似文献   

19.
Nucleoside phosphorothioates are modified nucleotides in which an oxygen atom bound to a phosphorus atom has been replaced by a sulfur atom. These compounds are suitable for the investigation of enzyme mechanisms because, although they are bound by enzymes in many cases just as well as the natural substrate, the enzymatic reactions very often proceed considerably more slowly. Since nucleoside thiophosphate O-esters exist as diastereomers these compounds can be used in suitable cases for information about the stereochemistry of enzymatic reactions.  相似文献   

20.
The initial steps of an enantioselective Diels-Alder reaction catalyzed by a CuII-bissulfoximine complex were followed by EXAFS (EXAFS=extended X-ray absorption fine structure), EPR (EPR=electron paramagnetic resonance) spectroscopy (CW-EPR, FID-detected EPR, pulse ENDOR, HYSCORE; CW=continuous wave; ENDOR=electron nuclear double resonance; HYSCORE=hyperfine sublevel correlation; FID=free induction decay), and UV-visible spectroscopy. The complexes formed between the parent CuX2 (X=Cl-, Br-, TfO-, SbF6-) salts, the chiral bissulfoximine ligand (S,S)-1, and N-(1-oxoprop-2-en-1-yl)oxazolidin-2-one (2) as the substrate in CH2Cl2 were investigated in frozen and fluid solution. In all cases, penta- or hexacoordinated CuII centers were established. The complexes with counterions indicating high stereoselectivity (TfO- and SbF6-) reveal one unique species in which substrate 2 binds to pseudoequatorial positions (via O atoms), shifting the counterions to axial locations. On the other hand, those lacking stereoselectivity (X=Cl- and Br-) form two species in which the parent halogen anions remain at equatorial positions preventing the formation of geometries compatible with those found for X=TfO- and SbF6-.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号