首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To provide terrain data for the development of physics-based vehicle mobility models, such as the Next Generation NATO Reference Mobility Model, there is a desire to make use of the vast amount of cone index (CI) data available. The challenge is whether the terrain parameters for physics-based vehicle mobility models can be predicted from CI data. An improved model for cone-terrain interaction has been developed that takes into account both normal pressure and shear stress distributions on the cone-terrain interface. A methodology based on Derivative-Free Optimization Algorithms (DFOA) has been developed in combination with the improved model to make use of continuously measured CI vs. sinkage data for predicting the three Bekker pressure-sinkage parameters, kc, kϕ and n, and two cone-terrain shear strength parameters, cc and ϕc. The methodology has been demonstrated on two types of soil, LETE sand and Keweenaw Research Center (KRC) soils, where continuous CI vs. sinkage measurements and continuous plate pressure vs. sinkage measurements are available. The correlations between the predicted pressure-sinkage relationships based on the parameters derived from continuous CI vs. sinkage measurements using the DFOA-based methodology and that measured were generally encouraging.  相似文献   

2.
Fractals are a popular method for modeling terrains that include various scales. This paper investigates the effectiveness of using fractals for generating artificial terrains which can be used for vehicle simulations. The 3-D Weierstrass–Mandelbrot function was used to generate surfaces based on experimentally measured terrains. There is an exponential relationship between the root means squared elevation of the surfaces and the fractal scaling parameter. This relationship was used to determine the required fractal parameters to generate a surface with a desired roughness. A light detection and ranging (LiDAR) sensor coupled with a global positioning system (GPS) and inertial navigation system (INS) was used to measure two off road surfaces. The experimental terrain was then compared to the simulated terrain. Based on the comparison, the fractal model can capture the general roughness of the experimentally measured terrains as determined by the dynamic response of a suspension model. However, the fractal model fails to capture some of the nuances and non-periodic events observed in experimental terrains.  相似文献   

3.
Traffic tests were conducted at two sites in northern Alaska with an air cushion vehicle, two light tracked vehicles, and three types of wheeled Rolligon vehicles. The traffic impact (surface depression, effect on thaw depth, damage to vegetation, traffic signature visibility) was monitored for periods of up to 10 years. Data show the immediate and long-term effects from the various types of vehicles for up to 50 traffic passes and the rates of recovery of the active layer. The air cushion vehicle produced the least impact. Multiple passes with the Rolligons caused longer-lasting damage than the light tracked vehicles because of their higher ground contact pressure and wider area of disturbance. Recovery occurs even if the initial depression of the tundra surface by a track or a wheel is quite deep (15 cm), as long as the organic mat is not sheared or destroyed.  相似文献   

4.
As longitudinal slip affects vehicle–pavement interactions on roads and hard surfaces, so too does it play an important role in interactions between vehicles and soft terrains, including snow. Although many slip-based models have been developed recently for tire–snow interactions (e.g., [1] and references cited therein), these models have only been partially validated, due to a lack of relevant experimental data. This paper presents comprehensive data from tests that were performed using a newly-developed test vehicle traversing natural snowy terrain, over a wide range of values for longitudinal slip, vertical load and torque via an effective accelerate/brake maneuver. Drawbar pull, motion resistance, wheel states and tire stiffness were presented as a function of slip; tire sinkage was obtained using a laser profilometer; strength and depth of snow were found using a snow micropenetrometer. The effects of the rear tire going over snow compacted by the front tire were also studied. The maximum traction force normalized by the vertical load is found to be ≈0.47, maximum motion resistance normalized by the vertical load is ≈0.4. Comparison of the trend and order-of-magnitude of test results with those from existing slip-based numerical model [1] shows good comparison in motion resistance, tire sinkage, and longitudinal stiffness, but indicates that a better traction model is needed to improve the comparison.  相似文献   

5.
Pressure ridges are the primary obstacle to the movement of amphibious surface vehicles travelling over the Arctic ice pack. Ridge height and spacing data can now be obtained with remote sensing methods and used to construct a realistic three-dimensional ridge model for sea ice terrain. This model can be used to perform trafficability analyses. The results, when combined with vehicle characteristics, can be used to predict vehicle operational performance. There is good agreement between predictions from the model and from simulated routes through sea ice areas selected from aerial photographs.

The terrain model is also useful for mapping regional variations in ridge characteristics throughout the Arctic Basin. The paper also discusses the nature of the rugged shear zone in the offshore region, and the presence of leads caused by dilation of the ice pack in strong weather systems.  相似文献   


6.
Four axle vehicles with bogies can adapt the position of the wheels to follow irregularities in the terrain, having an obstacle surpassing ability far greater than conventional 2-axle vehicles. Still, the ability to overcome discrete obstacles on a steep slope is very different depending on the wheel that is facing the obstacle. A possible solution to diminish this variation can be found if the vehicle is able to actively redistribute the load on each wheel. One strategy is to design the suspension mechanism so it can regulate its height, being able to level the chassis. Also, an active torque on the pin join between the bogie and the chassis can be applied with the same goal, adopting a system of active bogies. Both solutions have been parametrically studied in a bi-dimensional multibody model of a 4-axle vehicle with double bogies. The results show an improvement independent of obstacle position and terrain angle when using active bogies. With height regulation, this improvement is limited to the rear bogie wheels, but the obstacle surmounting capacity of the vehicle as a whole can be considerably increased if the optimal regulation point is found. Possible applications for such enhanced vehicles with bogies are performing different tasks in forest areas with obstacles on steep slopes or unstructured terrain exploration.  相似文献   

7.
This paper describes a new special tracked vehicle for use in studying the influence of different vehicle parameters on mobility in soft terrain; particularly muskegg and deep snow. A field test in deep snow was carried out to investigate the influence of nominal ground pressure on tractive performance of the vehicle. The vehicle proved useful for studying vehicle parameters influencing the tractive performance of tracked vehicles. The tests show that the nominal ground pressure has a significant effect on the tractive performance of tracked vehicles in deep snow. The decrease in drawbar pull coefficient when the nominal ground pressure is increased and originates at about the same amount from a decrease of the vehicle thrust coefficient, an increase of the belly drag coefficient and an increase of the track motion resistance coefficient.  相似文献   

8.
Conventional wheeled vehicles have serious mobility limitations in rough terrain while walking vehicles have inherent drawbacks such as a high number of DOF and actuators, control complexity and low energy efficiency. Vehicles that passively fit the position of multiple wheels to maintain contact with the ground can be a good solution to this problem. The present work aims to comparatively quantify the ability of overcoming obstacles that is achieved by using different configurations of vehicles with bogies. Different configurations of vehicles facing obstacles when climbing along ramps of different longitudinal slope have been modeled. Further analyses have been done in order to investigate the influence of the position of the center of gravity and obstacle traversing speed. Different asymmetrical bogie configurations have also been proposed to further improve the obstacle surmounting capacity of the 4-axle vehicle. The results show a clear improvement in the ability to overcome obstacles when using bogies. Compromise solutions can be found for the obstacle traversing speed and position of the center of gravity. Asymmetrical bogie geometry can provide an improvement in the obstacle surmounting ability, although vehicle application has to be taken into account to find the best solution.  相似文献   

9.
10.
An analytical framework for determining the mechanical properties of peat and predicting the tractive performance of tracked vehicle is presented. It takes into account the load-sinkage and shearing characteristics of peat as well as all major design parameters of tracked vehicle. An experimental study on the mechanical properties of peat soil was conducted at Sepang area, Selangor, Malaysia. The stiffness values of surface mat and underlying weak peat deposit from load-sinkage test were determined by specially made bearing capacity apparatus. The mean values of surface mat stiffness before and after drainage were found to be 31 and 45.62 kN/m3, respectively and the mean values of underlying peat stiffness before and after drainage were found to be 252 and 380.20 kN/m3, respectively. The mean value of the internal frictional angle, cohesiveness and shear deformation modulus of the peat soil sample were determined using a direct shear box apparatus in the laboratory. The mean values of internal friction angle, cohesiveness and shear deformation modulus before and after drainage were found to be 22.80° and 24.31°, 2.63 and 2.89 kN/m2, and 1.21 and 1.37 cm, respectively.  相似文献   

11.
The U.S. Army Yuma Proving Ground is the Department of Defense desert environment test center within the Sonoran Desert of Arizona. The Yuma Proving Ground has ∼320 km of unpaved vehicle test courses that cross a variety of landforms of diverse geologic age and characteristics. The surface materials of the courses ranges from bedrock to silt and their topography varies from steep and rolling to flat. Research presented here aims to provide a systematic characterization of the terrain of eight vehicle endurance and three dust courses so that their comparability with other desert areas of the World may be assessed. Landform and surface cover (upper 1 m) characterization was accomplished by geomorphic mapping based on 1-m resolution IKONOS satellite imagery, 10-m digital elevation models, field verification, and by assimilating pre-existing soil surveys and geologic maps, as well as site-specific investigations. Results provide an assessment of each test course, including information on the landform, geology, surface materials, soil type, degree of desert pavement development, dust content, and percent slope. Data is presented both on individual terrain property maps for each course and in the form of tabulated data for each official milepost marker along the courses. The results for one course area and an example of how they may be used to assess comparability with another desert of interest are presented here with the objective to improve the fidelity of desert testing during material research, development, testing and evaluation prior to deployment in the field.  相似文献   

12.
IntroductionTheintegrateddesignofairframe propulsionofhypersonicvehicleisoneofthekeytechnologyfortheair_breathingenginehypersonicvehicles[1~4 ].Thepurposestodointegrateddesignofforebody inletaretoputtheforebodyasthepre_compressiveramp ,toprovideuniformflowfield ,whichmeanssmallpressureandvelocitygradient,smallorientalangleofgasflowandlowaverageMachnumberattheentryoftheinlet,andenoughfluxfortheinlet,furthermoretomeetthedesignrequestofinlet.Ontheotherhand ,itmustbenon_sensitivetotheMachnumbera…  相似文献   

13.
Analytical and experimental research on non-stationary shock waves, rarefaction waves and contact surfaces has been conducted continuously at UTIAS since its inception in 1948. Some unique facilities were used to study the properties of planar, cylindrical and spherical shock waves and their interactions. Investigations were also performed on shock-wave structure and boundary layers in ionizing argon, water-vapour condensation in rarefaction waves, magnetogasdynamic flows, and the regions of regular and various types of Mach reflections of oblique shock waves. Explosively-driven implosions have been employed as drivers for projectile launchers and shock tubes, and as a means of producing industrial-type diamonds from graphite, and fusion plasmas in deuterium. The effects of sonic-boom on humans, animals and structures have also formed an important part of the investigations. More recently, interest has focussed on shock waves in dusty gases, the viscous and vibrational structure of weak spherical blast waves in air, and oblique shock-wave reflections. In all of these studies instrumentation and computational methods have played a very important role. A brief survey of this work is given herein and in more detail in the relevant references.This article was processed using Springer-Verlag TEX Shock Waves macro package 1990.  相似文献   

14.
The general mechanism of tractive performance of a four-wheel vehicle with rear-wheel drive moving up and down a sloped sandy soil has been considered theoretically. For the given vehicle dimensions and terrain-wheel system constants, the relationships among the effective tractive or braking effort of the vehicle, the amount of sinkage of the front and rear wheels, and the slip ratio were analysed by simulation. The optimum eccentricity of the vehicle’s center of gravity and the optimum application height of the drawbar-pull for obtaining the largest value of maximum effective tractive or braking effort could be calculated by means of the analytical simulation program. For a 5.88 kN weight vehicle, it was found that the optimum eccentricity of the center of gravity eopt was 1/6 for the range of slope angle—0βπ/24 rad during driving action of the rear wheel and eopt was also 1/6 for the range of slope angle—π/24β0 rad during braking action of the rear wheel. The optimum application height Hopt was found to be 35 cm for the range of slope angle 0βπ/24 rad during driving action of the rear wheel and Hopt was 0 cm for the range of slope angle—π/24β0 rad during braking action of the rear wheel.  相似文献   

15.
Quantification of multipass vehicle impacts is needed to determine terrain disturbance during military training. This study, conducted at Fort Riley, Kansas on a clay loam soil, evaluated the multipass terrain impacts of four military vehicles: the M1A1 Main Battle Tank, M998 HMMWV, M985 HEMTT, and M113 APC. Disturbed width and impact severity were assessed along 14 spirals subjected to a maximum of eight passes for a total of 696 impact points. Project goals included evaluating vegetation impacts by tracked and wheeled military vehicles across multiple passes in order to develop coefficients allowing more accurate predictive modeling of vehicle multipass impacts. Multiple passes produce increased vegetative impacts, with multipass coefficients (MPC) ranging from 0.98 to 4.44 depending on vehicle type, size and turn severity. Tracked vehicles were found to have a higher multipass coefficient than wheeled vehicles, with multipass coefficients increasing with vehicle weight and the sharpness of turns. The components of a more theoretical and universal multipass vehicle impact model are discussed. Understanding multipass dynamics will allow land managers to determine the extent and severity of terrain impacts on military training areas and quickly evaluate vehicle environmental impacts when used in conjunction with a GPS-based vehicle tracking system (VTS).  相似文献   

16.
The problem of evaluation and prediction of vehicle mobility on snow-covered terrain needs to be studied not on the basis of application of direct technology transfer from vehicle mobility on soil, but on the basis of new perspectives on material (snowpack) properties and response performance. The complexities of snow identification and classification, arising from local environmental control and thermodynamic history, render analogies between snow and soil inapplicable. In addition, it is significant to note that in snow trafficability considerations, the first pass is the worst pass.  相似文献   

17.
A study of the correlation between the measured and predicted vehicle performance over undistributed and preconditioned snow using the Nepean Tracked Vehicle Performance Model, NTVPM, has been carried out. It is shown that on undisturbed snow in Fernie, British Columbia, the performance of a BV 206 predicted by NTVPM correlates very well with measured performance obtained in the field. On preconditioned snow, there is also a reasonable correlation between the measured vehicle performance and predicted one using NTVPM. It is found that predictions of vehicle performance made by NTVPM using pressure-sinkage data obtained with the Swiss Rammsonde and with the bevameter are comparable. This indicates that the pressure-sinkage data obtained using the Rammsonde can be used as input to the NTVPM for predicting tracked vehicle performance over snow. It is shown that in comparison with an earlier version, NTVPM-85, the latest version of the Nepean Tracked Vehicle Performance Model, NTVPM-86, which takes into account fully the characteristics of roadwheel suspension systems, provides improved predictions of vehicle performance over snow where track sinkage is significant. It is suggested that the computer simulation model NTVPM, using pressure-sinkage data obtained by the Rammsonde as input, could form a useful interface with cone based models, such as the NATO Reference Mobility Model, to provide them with an additional capability of predicting tracked vehicle performance over snow.  相似文献   

18.
The point of departure of the present work may be either an interest in vehicle vibrations themselves, or in ground vibrations and terrain damage due to vehicles traveling off-road. The vibrations of a vehicle traversing dry, soft terrain, which is either rough or undulating, may be significantly modified by the dynamic interaction of the vehicle with the soil, particularly due to losses of energy by soil compaction and as elastic waves. The present work provides a prediction methodology for both vehicle and soil vibrations, accounting for the effects mentioned above. An expedient linear method is compared to a rheologically-based non-linear method. In the linear method, the soil compaction is incorporated as a loss factor in the dynamic stiffness of the otherwise elastic half-space; the imaginary part of that dynamic stiffness already includes the effects of wave damping. The non-linear model treats the compaction using a general rheological model for soils exhibiting both viscous and thixotropic effects, and requires iterative solution. A key feature of the latter model is the hypothesis that the stress distribution may be approximately regarded as quasi-static when calculating compaction losses; that approximation is expected to hold at low frequencies, since the P-wavelength in the soil is then much greater than the dimensions of the zone in which most compaction occurs. The methods predict that the soil compaction and excited ground vibrations have maxima at the vehicle bounce and hop resonances, and at high frequencies at which the Rayleigh wavelength approaches the order of the contact patch diameter. Moreover, sufficiently soft, compactable soils, but fully realizable in nature, control the vehicle response at the hop resonance, and possibly also at the bounce resonance.  相似文献   

19.
Nonlinear Dynamics - This work explores the role of asymmetrical damping and geometrical nonlinearities in the suspension system of a simplified vehicle model in order to improve comfort. Improving...  相似文献   

20.
A realistic prediction of the traction capacity of vehicles operating in off-road conditions must account for stochastic variations in the system itself, as well as in the operational environment. Moreover, for mobility studies of wheeled vehicles on deformable soil, the selection of the tire model used in the simulation influences the degree of confidence in the output. Since the same vehicle may carry various loads at different times, it is also of interest to analyze the impact of cargo weight on the vehicle’s traction.This study focuses on the development of an algorithm to calculate the tractive capacity of an off-road vehicle with stochastic vehicle parameters (such as suspension stiffness, suspension damping coefficient, tire stiffness, and tire inflation pressure), operating on soft soil with an uncertain level of moisture, and on a terrain topology that induces rapidly changing external excitations on the vehicle. The analysis of the vehicle–soil dynamics is performed for light cargo and heavy cargo scenarios. The algorithm relies on the comparison of the ground pressure and the calculated critical pressure to decide if the tire can be approximated as a rigid wheel or if it should be modeled as a flexible wheel. It also involves using previously-developed vehicle and stochastic terrain models, and computing the vehicle sinkage, resistance force, tractive force, drawbar pull, and tractive torque.The vehicle model used as a case study has seven degrees of freedom. Each of the four suspension systems is comprised of a nonlinear spring and a viscous (linear or magneto-rheological) damper. An off-road terrain profile is simulated as a 2-D random process using a polynomial chaos approach [Sandu C, Sandu A, Li L. Stochastic modeling of terrain profiles and soil parameters. SAE 2005 transactions. J Commer Vehicles 2005-01-3559]. The soil modeling is concerned with the efficient treatment of the impact of the moisture content on relationships critical in defining the mobility of an off-road vehicle (such as the pressure–sinkage [Sandu C et al., 2005-01-3559] and the shear stress–shear displacement relations). The uncertainties in vehicle parameters and in the terrain profile are propagated through the vehicle model, and the uncertainty in the output of the vehicle model is analyzed [Sandu A, Sandu C, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part I: theoretical and computational aspects, Multibody system dynamics. Publisher: Springer Netherlands; June 29, 2006. p. 1–23 (23), ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9007-5; Sandu C, Sandu A, Ahmadian M. Modeling multibody dynamic systems with uncertainties. Part II: numerical applications. Multibody system dynamics, vol. 15, No. 3. Publisher: Springer Netherlands; 2006. p. 241–62 (22). ISSN: 1384-5640 (Paper) 1573-272X (Online). doi:10.1007/s11044-006-9008-4]. Such simulations can provide the basis for the study of ride performance, handling, and mobility of the vehicle in rough off-road conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号