首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The regioselective synthesis of novel functionalized condensed organochalcogen compounds by chalcogenocyclofunctionalization reactions based on chalcogen halides and the natural products thymol and carvacrol has been developed. The reactions of selenium dibromide with allyl thymol and allyl carvacrol proceeded in methylene chloride at room temperature in the presence of NaHCO3 affording bis[(7-isopropyl-4-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] and bis[(4-isopropyl-7-methyl-2,3-dihydro-1-benzofuran-2-yl)methyl] selenides in 90–92% yield. Similar sulfides were obtained in 70–72% yields by the reaction of sulfur dichloride in chloroform under reflux. Trihalotellanes containing the same organic moieties were synthesized from allyl thymol, allyl carvacrol and tellurium tetrachloride or tetrabromide in quantitative yields. Corresponding functionalized ditellurides were prepared in 91–92% yields by the reduction of the trichlorotellanes with sodium metabisulfite in two-phase solvent system. The comparison of reactivity of sulfur, selenium and tellurium halides in chalcogenocyclofunctionalization and distinguishing features of each reaction were discussed.  相似文献   

2.
Three types of α-elimination (oxidative, photolytic, and thermal) of organotellurium(IV) halides to give organic halides have been disclosed. Treatment of organotellurium(IV) halides with some oxidants, preferably t-butyl hydroperoxide, in 1,4-dioxane, acetic acid, or acetonitrile affords the corresponding organic halides in good yields with retention of configuration and by ipso-replacement. The reactivity order of this α-elimination is roughly as follows: alkyl > aryl > alkenyl. The main reaction course seems to be a 1,2-tellurium halogen shift in unstable organotellurium(VI) compounds formed in situ by oxidation. Similar α-elimination also occurs by photolysis of these compounds with a high-pressure mercury lamp in benzene as the solvent. Here, a cross-coupling of the organic moiety with benzene scarcely occurs except for the cases of diaryltellurium(IV) dihalides. Neat pyrolysis of some alkyl(phenyl)tellurium(IV) dibromides at 200–250 °C (Kugelrohr distillation apparatus) again results in α-elimination to produce the corresponding alkyl bromides almost quantitatively.  相似文献   

3.
The redox chemistry of tellurium-chalcogenide systems is examined via reactions of tellurium(IV) tetrachloride with Li[(t)()BuN(E)P(mu-N(t)Bu)(2)P(E)N(H)(t)Bu] (3a, E = S; 3b, E = Se). Reaction of TeCl(4) with 2 equiv of 3a in THF generates the tellurium(IV) species TeCl(3)[HcddS(2)][H(2)cddS(2)] 4a [cddS(2) = (t)BuN(S)P(mu-N(t)Bu)(2)P(S)N(t)Bu] at short reaction times, while reduction to the tellurium(II) complex TeCl(2)[H(2)cddS(2)](2) 5a is observed at longer reaction times. The analogous reaction of TeCl(4) and 3b yields only the tellurium(II) complex TeCl(2)[H(2)cddSe(2)](2) 5b. The use of 4 equiv of 3a or 3b produces Te[HcddE(2)](2) (6a (E = S) or 6b (E = Se)). NMR and EPR studies of the 5:1 reaction of 3a and TeCl(4) in THF or C(6)D(6) indicate that the formation of the Te(II) complex 6a via decomposition of a Te(IV) precursor occurs via a radical process to generate H(2)cddS(2). Abstraction of hydrogen from THF solvent is proposed to account for the formation of 2a. These results are discussed in the context of known tellurium-sulfur and tellurium-nitrogen redox systems. The X-ray crystal structures of 4a.[C(7)H(8)](0.5), 5a, 5b, 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) have been determined. The cyclodiphosph(V)azane dichalcogenide ligand chelates the tellurium center in an E,N (E = S, Se) manner in 4a.[C(7)H(8)](0.5), 6a.[C(6)H(14)](0.5), and 6b.[C(6)H(14)](0.5) with long Te-N bond distances in each case. Further, a neutral H(2)cddS(2) ligand weakly coordinates the tellurium center in 4a small middle dot[C(7)H(8)](0.5) via a single chalcogen atom. A similar monodentate interaction of two neutral ligands with a TeCl(2) unit is observed in the case of 5a and 5b, giving a trans square planar arrangement at tellurium.  相似文献   

4.
From the very beginning organic chemistry and total synthesis have been intimately joined. In fact, one of the first things that freshmen in organic chemistry learn is how to join two molecules together to obtain a more complex one. Of course they still have a long way to go to become fully mature synthetic chemists, but they must have the primary instinct to build molecules, as synthesis is the essence of organic chemistry. With the different points of view that actually coexist in the chemical community about the maturity of the science (art, or both) of organic synthesis, it is clear that nowadays we know how to make almost all of the most complex molecules ever isolated. The primary question is how easy is it to accomplish? For the readers of papers describing the total synthesis of either simple or complex molecules, it appears that the routes followed are, most of the time, smooth and free of troubles. The synthetic scheme written on paper is, apparently, done in the laboratory with few, if any, modifications and these, essentially, seem to be based on finding the optimal experimental conditions to effect the desired reaction. Failures in the planned synthetic scheme to achieve the goal, detours imposed by unexpected reactivity, or the absence of reactivity are almost never discussed, since they may diminish the value of the work reported. This review attempts to look at total synthesis from a different side; it will focus on troubles found during the synthetic work that cause detours from the original synthetic plan, or on the dead ends that eventually may force redesign. From there, the evolution from the original route to the final successful one that achieves the synthetic target will be presented. The syntheses discussed in this paper have been selected because they contain explicit information about the failures of the original synthetic plan, together with the evolution of the final route to the target molecule. Therefore, they contain a lot of useful negative information that may otherwise be lost.  相似文献   

5.
A very efficient method of preparation for 5-alkyl and 5-arylthiotetrazoles from the corresponding alkyl or aryl halides is described. The halides are first transformed into thiocyanates which further react with azide, yielding the corresponding tetrazoles with [2+3] polar cycloaddition. All synthetic transformations are performed under phase transfer catalytic conditions. The yields vary from good to excellent except for the preparation of 5-benzylthiotetrazole, where the reaction between benzyl thiocyanate and azide [2+3] cycloaddition is in competition with nucleophilic substitution, with benzyl azide as product.  相似文献   

6.
In organic molecules carboxylic acid groups are among the most common functionalities. Activated derivatives of carboxylic acids have long served as versatile connection points in derivatizations and in the construction of carbon frameworks. In more recent years numerous catalytic transformations have been discovered which have made it possible for carboxylic acids to be used as building blocks without the need for additional activation steps. A large number of different product classes have become accessible from this single functionality along multifaceted reaction pathways. The frontispiece illustrates an important reason for this: In the catalytic cycles carbon monoxide gas can be released from acyl metal complexes, and gaseous carbon dioxide from carboxylate complexes, with different organometallic species being formed in each case. Thus, carboxylic acids can be used as synthetic equivalents of acyl, aryl, or alkyl halides, as well as organometallic reagents. This review provides an overview of interesting catalytic transformations of carboxylic acids and a number of derivatives accessible from them in situ. It serves to provide an invitation to complement, refine, and use these new methods in organic synthesis.  相似文献   

7.
This article describes the first attempt to synthesize selenides and selenol esters prepared from the reaction of 1-benzyl or 1-acylselenophenylmethaniminium halides and organic halides under liquid-liquid phase-transfer conditions. This method also can be applied to the synthesis of diseleno tweezers-like molecules as metalloreceptors.  相似文献   

8.
Despite their abundance in organic molecules, considerable limitations still exist in synthetic methods that target the direct C−H functionalization at sp3-hybridized carbon atoms. This is even more the case for light alkanes, which bear some of the strongest C−H bonds known in Nature, requiring extreme activation conditions that are not tolerant to most organic molecules. To bypass these issues, synthetic chemists rely on prefunctionalized alkyl halides or organometallic coupling partners. However, new synthetic methods that target regioselectively C−H bonds in a variety of different organic scaffolds would be of great added value, not only for the late-stage functionalization of biologically active molecules but also for the catalytic upgrading of cheap and abundant hydrocarbon feedstocks. Here, we describe a general, mild and scalable protocol which enables the direct C(sp3)−H carbonylation of saturated hydrocarbons, including natural products and light alkanes, using photocatalytic hydrogen atom transfer (HAT) and gaseous carbon monoxide (CO). Flow technology was deemed crucial to enable high gas-liquid mass transfer rates and fast reaction kinetics, needed to outpace deleterious reaction pathways, but also to leverage a scalable and safe process.  相似文献   

9.
A straightforward synthetic approach that exploits linear- and angular-shaped naphthodithiophenes (NDTs) being potential as new core structures for organic semiconductors is described. The newly established synthetic procedure involves two important steps; one is the chemoselective Sonogashira coupling reaction on the trifluoromethanesulfonyloxy site over the bromine site enabling selective formation of o-bromoethynylbenzene substructures on the naphthalene core, and the other is a facile ring closing reaction of fused-thiophene rings from the o-bromoethynylbenzene substructures. As a result, three isomeric NDTs, naphtho[2,3-b:6,7-b']dithiophene, naphtho[2,3-b:7,6-b']dithiophenes, and naphtho[2,1-b:6,5-b']dithiophene, are selectively synthesized. Electrochemical and optical measurements of the parent NDTs indicated that the shape of the molecules plays an important role in determining the electronic structure of the compounds; the linear-shaped NDTs formally isoelectronic with naphthacene have lower oxidation potentials and more red-shifted absorption bands than those of the angular-shaped NDTs isoelectronic with chrysene. On the contrary, the performance of the thin-film-based field-effect transistors (FETs) using the dioctyl or diphenyl derivatives were much influenced by the symmetry of the molecules; centrosymmetric derivatives tend to give higher mobility (up to 1.5 cm(2) V(-1) s(-1)) than axisymmetric ones (~0.06 cm(2) V(-1) s(-1)), implying that the intermolecular orbital overlap in the solid state is influenced by the symmetry of the molecules. These results indicate that the present NDT cores, in particular the linear-shaped, centrosymmetric naphtho[2,3-b:6,7-b']dithiophene, are promising building blocks for the development of organic semiconducting materials.  相似文献   

10.
Metal chalcogenides and metal chalcogenide halides are distinguished by their structural diversity and by their very different physical properties. Therefore, the synthesis of novel compounds from this class is always a rewarding goal for the preparatively oriented solid-state chemist. Over the past few years, many syntheses and structural investigations have stimulated the field. The emphasis of the research has been placed on selenium-rich and tellurium-rich compounds, which are characterized by directed covalent bonds between the chalcogen atoms. Compounds with novel chalcogen polycations have also become accessible during the past few years by reacting the chalcogen elements with transition metal halides, or from chemical vapor deposition in the sense of chemical transport reactions. In these compounds, tellurium differs from its lighter homologues by a pronounced tendency towards greater covalence. This article attmepts to provide an overview of new developments in the field of compounds with chalcogen polycations and of metal chalcogenide halides, with an emphasis on compounds containing molybdenum and tungsten as the transition metals and tellurium as the chalcogen.  相似文献   

11.
Diaryl ether moiety is found in a pool of naturally occurring and medicinally important compounds.[1] As a consequent, considerable efforts have been devoted to the assembly of this framework.[2] Recently, we have developed a microwave heating version of the synthesis of diaryl ethers as well as aryl sulfides. Under our conditions, even the extremely electron-poor 4-nitrophenol works well and its reaction with 1-halo-4-nitrobenzenes produces 4-(nitrophenoxy)-benzonitriles in satisfactory yield. The scope of the present protocol has been expanded to hydroxylated six-membered heterocycles as well as 2-pyrimidinethiol with mildly activated aryl halides, affording heteroaryl ethers and respectively sulfides. The advantages of the present method include the wide substrate scope, no use of any metal catalysts, the ease of product isolation and high yields.  相似文献   

12.
Lithium amides reacted with tellurium under atmospheric pressure of carbon monoxide to yield lithium carbamotelluroates which were trapped with alkyl halides to give Te-alkyl carbamotelluroates in good yields. Results of control experiments suggested that lithium carbamotelluroates were formed by the reaction of tellurium with carbamoyllithiums generated in situ from lithium amides and carbon monoxide. It was revealed also that yields were improved when tellurium was preliminarily treated with lithium amides prior to the introduction of carbon monoxide into the reaction media.  相似文献   

13.
Desai GS  Shinde VM 《Talanta》1992,39(4):405-408
A method is proposed for the extraction of microgram levels of tellurium(IV) from halide media with tris-(2-ethyl hexyl) phosphate dissolved in toluene as extractant. The optimum conditions have been evaluated from a critical study of acid concentration, extractant concentration, period of equilibration and effect of solvent. Tellurium ion from the organic phase is stripped with water and determined spectrophotometrically with stannous chloride. The method affords binary separation of tellurium from copper, bismuth, gold and selenium and is applicable to the analysis of alloy samples and synthetic mixtures. The method is fast, accurate and precise.  相似文献   

14.
The palladium-catalysed reaction of 2-propynyl-1,3-dicarbonyls with organic halides or triflates provides an efficient straightforward entry into highly substituted furans. The best results have been obtained by using an excess of the alkyne. The process can tolerate a wide variety of important functional groups both on the alkyne and the organic halide or triflate. Under an atmosphere of carbon monoxide, the reaction affords furan derivatives incorporating carbon monoxide. Depending on the alkyne to organic halide or triflate ratio, acyl furans (incorporating one molecule of carbon monoxide) or enol esters (incorporating two molecules of carbon monoxide) can be isolated as the main products.  相似文献   

15.
A preparative synthesis of aminomethyl derivatives of benzo[b]thio(seleno,telluro)phenes and their hydrohalides by the reaction of sulfur, selenium, and tellurium halides with 1-phenylpropynamines was developed.Communication 12 from the series Electrophilic reactions of halides of group VI elements. See [1] for Communication 11.Translated from Khimiya Geterotsiklicheskikh Soedinenii, No. 10, pp. 1331–1334, October, 1990.  相似文献   

16.
[Structure: see text] A highly efficient and simple synthesis of dithiocarbamates is possible based on the one-pot reaction of amines, CS2, and alkyl halides without using a catalyst under solvent-free conditions. The mild reaction conditions, high yields, and broad scope of the reaction illustrate the good synthetic utility of this method. The reaction is a highly atom-economic process for production of S-alkyl thiocarbamates and successfully can be used in high quantities in the pharmaceutical or agrochemical industries.  相似文献   

17.
Although known since the 1950s, free-radical carbonylation has not received much attention until only recently. In the last few years the application of modern free-radical techniques has revealed the high synthetic potential of this reaction as a tool for introducing CO into organic molecules. Clearly now is the time for a renaissance of this chemistry. Under standard conditions (tributyltin hydride/CO) primary, secondary, as well as tertiary alkyl bromides and iodides can be efficiently converted into the corresponding aldehydes. Aromatic and α,β-unsaturated aldehydes can also be prepared from the parent aromatic and vinylic iodides. If the reaction is carried out in the presence of alkenes containing an electron-withdrawing substituent, the initially formed acyl radical subsequently adds to the alkene, leading to a general method for the synthesis of unsymmetrical ketones. This three-component coupling reaction can be extended successfully to allyltin-mediated reactions. Thus, β,γ-enones can be prepared from organic halides, CO, and allyltributylstannanes. In a remarkable one-pot procedure alkyl halides can be treated with a mixture of alkene, allyltributylstannane, and carbon monoxide in a four-component coupling reaction that provides β-functionalized δ,?-unsaturated ketones by the formation of three new C? C bonds. The reaction of 4-pentenyl radicals with CO leads to acyl radical cyclization, which provides a useful method for the synthesis of cyclopentanones. Certain useful one-electron oxidations can be combined efficiently with free-radical carbonylations. These findings and others discussed in this article clearly demonstrate that free-radical carbonylation can now be considered a practical alternative to transition metal mediated carbonylation.  相似文献   

18.
Abdelwahed R. Sayed 《Tetrahedron》2012,68(13):2784-2789
A novel and efficient synthesis of 1,3,4-thiadiazines, bis-1,3,4-thiadiazoles, [1,2,4]triazino[3,4-b][1,3,4]thiadiazine, and thiazolines is reported from the reaction of α-haloketo hydrazonoyl halides with carbonothioic dihydrazide or its analogues. The structures were elucidated on the basis of their elemental analysis, spectral data and an alternative synthetic route.  相似文献   

19.
Cross-coupling processes of aryl or alkenyl halides with organometallic compounds of main group elements cat alyzed by palladium complexes have been found extensive use in organic synthesis. These cross-coupling reactions offer a powerful tool for the formation of carbon-carbon bonds. [1] The Suzuki-Miyaura cross-coupling reaction has been employed for the synthesis of ketone as well.  相似文献   

20.
[reaction: see text] The ortho position of the aromatic ring of pyridyl group-substituted aromatic compounds is directly arylated or alkenylated with organic halides in the presence of a catalytic amount of a ruthenium(II)-phosphine complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号